- -

Individual Categorisation of Glucose Profiles Using Compositional Data Analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Individual Categorisation of Glucose Profiles Using Compositional Data Analysis

Mostrar el registro completo del ítem

Biagi, L.; Bertachi, A.; Giménez, M.; Conget, I.; Bondía Company, J.; Martín-Fernández, JA.; Vehí, J. (2019). Individual Categorisation of Glucose Profiles Using Compositional Data Analysis. Statistical Methods in Medical Research. 28(12):3550-3567. https://doi.org/10.1177/0962280218808819

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147749

Ficheros en el ítem

Metadatos del ítem

Título: Individual Categorisation of Glucose Profiles Using Compositional Data Analysis
Autor: Biagi, L. Bertachi, A. Giménez, M. Conget, I. Bondía Company, Jorge Martín-Fernández, Josep Antoni Vehí, Josep
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Fecha difusión:
Resumen:
[EN] The aim of this study was to apply a methodology based on compositional data analysis (CoDA) to categorise glucose profiles obtained from continuous glucose monitoring systems. The methodology proposed considers ...[+]
Palabras clave: Continuous glucose monitoring , Type 1 diabetes , Compositional data analysis , Decision support system , Diabetes management
Derechos de uso: Cerrado
Fuente:
Statistical Methods in Medical Research. (issn: 0962-2802 )
DOI: 10.1177/0962280218808819
Editorial:
SAGE Publications
Versión del editor: https://doi.org/10.1177/0962280218808819
Código del Proyecto:
info:eu-repo/grantAgreement/CNPq//202050%2F2015-7/
info:eu-repo/grantAgreement/MINECO//DPI2016-78831-C2-1-R/ES/SOLUCIONES PARA LA MEJORA DE LA EFICIENCIA Y SEGURIDAD DEL PANCREAS ARTIFICIAL MEDIANTE ARQUITECTURAS DE CONTROL MULTIVARIABLE TOLERANTES A FALLOS/
info:eu-repo/grantAgreement/MINECO//DPI2016-78831-C2-2-R/ES/SOLUCIONES PARA LA MEJORA DE LA EFICIENCIA Y SEGURIDAD DEL PANCREAS ARTIFICIAL MEDIANTE ARQUITECTURAS DE CONTROL MULTIVARIABLE TOLERANTES A FALLOS/
info:eu-repo/grantAgreement/CNPq//207688%2F2014-1/
Agradecimientos:
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This project has been partially supported by the Spanish Government MINECO through Grants ...[+]
Tipo: Artículo

References

Cobelli, C., Dalla Man, C., Sparacino, G., Magni, L., De Nicolao, G., & Kovatchev, B. P. (2009). Diabetes: Models, Signals, and Control. IEEE Reviews in Biomedical Engineering, 2, 54-96. doi:10.1109/rbme.2009.2036073

Kovatchev, B., & Cobelli, C. (2016). Glucose Variability: Timing, Risk Analysis, and Relationship to Hypoglycemia in Diabetes. Diabetes Care, 39(4), 502-510. doi:10.2337/dc15-2035

Beck, R. W., Riddlesworth, T. D., Ruedy, K. J., Kollman, C., Ahmann, A. J., Bergenstal, R. M., … Kruger, D. F. (2017). Effect of initiating use of an insulin pump in adults with type 1 diabetes using multiple daily insulin injections and continuous glucose monitoring (DIAMOND): a multicentre, randomised controlled trial. The Lancet Diabetes & Endocrinology, 5(9), 700-708. doi:10.1016/s2213-8587(17)30217-6 [+]
Cobelli, C., Dalla Man, C., Sparacino, G., Magni, L., De Nicolao, G., & Kovatchev, B. P. (2009). Diabetes: Models, Signals, and Control. IEEE Reviews in Biomedical Engineering, 2, 54-96. doi:10.1109/rbme.2009.2036073

Kovatchev, B., & Cobelli, C. (2016). Glucose Variability: Timing, Risk Analysis, and Relationship to Hypoglycemia in Diabetes. Diabetes Care, 39(4), 502-510. doi:10.2337/dc15-2035

Beck, R. W., Riddlesworth, T. D., Ruedy, K. J., Kollman, C., Ahmann, A. J., Bergenstal, R. M., … Kruger, D. F. (2017). Effect of initiating use of an insulin pump in adults with type 1 diabetes using multiple daily insulin injections and continuous glucose monitoring (DIAMOND): a multicentre, randomised controlled trial. The Lancet Diabetes & Endocrinology, 5(9), 700-708. doi:10.1016/s2213-8587(17)30217-6

Contreras, I., Quirós, C., Giménez, M., Conget, I., & Vehi, J. (2016). Profiling intra-patient type I diabetes behaviors. Computer Methods and Programs in Biomedicine, 136, 131-141. doi:10.1016/j.cmpb.2016.08.022

Chastin, S. F. M., Palarea-Albaladejo, J., Dontje, M. L., & Skelton, D. A. (2015). Combined Effects of Time Spent in Physical Activity, Sedentary Behaviors and Sleep on Obesity and Cardio-Metabolic Health Markers: A Novel Compositional Data Analysis Approach. PLOS ONE, 10(10), e0139984. doi:10.1371/journal.pone.0139984

Pedišić, Ž., & Hardy, L. L. (2017). Physical activity prevalence in Australian children and adolescents: Kinesiology, 49(2), 135-145. doi:10.26582/k.49.2.14

Mathematical contributions to the theory of evolution.—On a form of spurious correlation which may arise when indices are used in the measurement of organs. (1897). Proceedings of the Royal Society of London, 60(359-367), 489-498. doi:10.1098/rspl.1896.0076

Egozcue, J. J. (2003). Mathematical Geology, 35(3), 279-300. doi:10.1023/a:1023818214614

Egozcue, J. J., & Pawlowsky-Glahn, V. (2005). Groups of Parts and Their Balances in Compositional Data Analysis. Mathematical Geology, 37(7), 795-828. doi:10.1007/s11004-005-7381-9

Martín-Fernández, J. A., Pawlowsky-Glahn, V., Egozcue, J. J., & Tolosona-Delgado, R. (2017). Advances in Principal Balances for Compositional Data. Mathematical Geosciences, 50(3), 273-298. doi:10.1007/s11004-017-9712-z

Egozcue, J. J., & Pawlowsky-Glahn, V. (2006). Simplicial geometry for compositional data. Geological Society, London, Special Publications, 264(1), 145-159. doi:10.1144/gsl.sp.2006.264.01.11

Palarea-Albaladejo, J., Martín-Fernández, J. A., & Soto, J. A. (2012). Dealing with Distances and Transformations for Fuzzy C-Means Clustering of Compositional Data. Journal of Classification, 29(2), 144-169. doi:10.1007/s00357-012-9105-4

Palarea-Albaladejo, J., & Martín-Fernández, J. A. (2015). zCompositions — R package for multivariate imputation of left-censored data under a compositional approach. Chemometrics and Intelligent Laboratory Systems, 143, 85-96. doi:10.1016/j.chemolab.2015.02.019

Bergenstal, R. M., Ahmann, A. J., Bailey, T., Beck, R. W., Bissen, J., Buckingham, B., … Wesley, D. M. (2013). Recommendations for Standardizing Glucose Reporting and Analysis to Optimize Clinical Decision Making in Diabetes: The Ambulatory Glucose Profile (AGP). Diabetes Technology & Therapeutics, 15(3), 198-211. doi:10.1089/dia.2013.0051

Maahs, D. M., Buckingham, B. A., Castle, J. R., Cinar, A., Damiano, E. R., Dassau, E., … Lum, J. W. (2016). Outcome Measures for Artificial Pancreas Clinical Trials: A Consensus Report: Table 1. Diabetes Care, 39(7), 1175-1179. doi:10.2337/dc15-2716

Schnell, O., Barnard, K., Bergenstal, R., Bosi, E., Garg, S., Guerci, B., … Home, P. (2017). Role of Continuous Glucose Monitoring in Clinical Trials: Recommendations on Reporting. Diabetes Technology & Therapeutics, 19(7), 391-399. doi:10.1089/dia.2017.0054

Thió-Henestrosa, S., Egozcue, J. J., Pawlowsky-Glahn, V., Kovács, L. Ó., & Kovács, G. P. (2008). Balance-dendrogram. A new routine of CoDaPack. Computers & Geosciences, 34(12), 1682-1696. doi:10.1016/j.cageo.2007.06.011

Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A K-Means Clustering Algorithm. Applied Statistics, 28(1), 100. doi:10.2307/2346830

Kovatchev, B. P., Straume, M., Cox, D. J., & Farhy, L. S. (2000). Risk Analysis of Blood Glucose Data: A Quantitative Approach to Optimizing the Control of Insulin Dependent Diabetes. Journal of Theoretical Medicine, 3(1), 1-10. doi:10.1080/10273660008833060

Riddell, M. C., Gallen, I. W., Smart, C. E., Taplin, C. E., Adolfsson, P., Lumb, A. N., … Laffel, L. M. (2017). Exercise management in type 1 diabetes: a consensus statement. The Lancet Diabetes & Endocrinology, 5(5), 377-390. doi:10.1016/s2213-8587(17)30014-1

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem