- -

Novel online data allocation for hybrid memories on tele-health systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Novel online data allocation for hybrid memories on tele-health systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Chen, Longbin es_ES
dc.contributor.author Qiu, Meikang es_ES
dc.contributor.author Dai, Wenyun es_ES
dc.contributor.author Hassan Mohamed, Houcine es_ES
dc.date.accessioned 2020-07-15T03:32:10Z
dc.date.available 2020-07-15T03:32:10Z
dc.date.issued 2017-07 es_ES
dc.identifier.issn 0141-9331 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147999
dc.description.abstract [EN] The developments of wearable devices such as Body Sensor Networks (BSNs) have greatly improved the capability of tele-health industry. Large amount of data will be collected from every local BSN in real-time. These data is processed by embedded systems including smart phones and tablets. After that, the data will be transferred to distributed storage systems for further processing. Traditional on-chip SRAMs cause critical power leakage issues and occupy relatively large chip areas. Therefore, hybrid memories, which combine volatile memories with non-volatile memories, are widely adopted in reducing the latency and energy cost on multi-core systems. However, most of the current works are about static data allocation for hybrid memories. Those mechanisms cannot achieve better data placement in real-time. Hence, we propose online data allocation for hybrid memories on embedded tele-health systems. In this paper, we present dynamic programming and heuristic approaches. Considering the difference between profiled data access and actual data access, the proposed algorithms use a feedback mechanism to improve the accuracy of data allocation during runtime. Experimental results demonstrate that, compared to greedy approaches, the proposed algorithms achieve 20%-40% performance improvement based on different benchmarks. (C) 2016 Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship This work is supported by NSF CNS-1457506 and NSF CNS-1359557. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Microprocessors and Microsystems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Hybrid memory es_ES
dc.subject Non-volatile memory es_ES
dc.subject Tele-health es_ES
dc.subject Data allocation es_ES
dc.subject Dynamic programming es_ES
dc.subject Heuristic approach es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Novel online data allocation for hybrid memories on tele-health systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.micpro.2016.08.003 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1457506/US/EAGER: Towards Low-Latency Low-Power Heterogeneous Memory Access/
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1359557/US/EAGER: Towards Low-Latency Low-Power Heterogeneous Memory Access/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Chen, L.; Qiu, M.; Dai, W.; Hassan Mohamed, H. (2017). Novel online data allocation for hybrid memories on tele-health systems. Microprocessors and Microsystems. 52:391-400. https://doi.org/10.1016/j.micpro.2016.08.003 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.micpro.2016.08.003 es_ES
dc.description.upvformatpinicio 391 es_ES
dc.description.upvformatpfin 400 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 52 es_ES
dc.relation.pasarela S\353285 es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem