- -

Soil Water Dynamics in a Rainfed Mediterranean Agricultural System

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Soil Water Dynamics in a Rainfed Mediterranean Agricultural System

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jimenez-de-Santiago, Diana E. es_ES
dc.contributor.author Lidón, Antonio es_ES
dc.contributor.author Bosch-Serra, Angela D. es_ES
dc.date.accessioned 2020-07-15T03:32:13Z
dc.date.available 2020-07-15T03:32:13Z
dc.date.issued 2019-04-17 es_ES
dc.identifier.issn 2073-4441 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148000
dc.description.abstract [EN] Rainfed Mediterranean agriculture is characterized by low water input and by soil water content below its field capacity during most of the year. However, erratic rainfall distribution can lead to deep drainage. The understanding of soil-water dynamics is essential to prevent collateral impacts in subsuperficial waters by leached pollutants and to implement suitable soil management (e.g., agronomic measures to avoid nitrate leaching). Soil water dynamics during two fallow years and three barley crop seasons was evaluated using the Leaching estimation and chemistry model in a semiarid Mediterranean agricultural system. Model calibration was carried out using soil moisture data from disturbed soil samples and from capacitance probes installed at three depths. Drainage of water from the plots occurred in the fall and winter periods. The yearly low drainage values obtained (<15 mm) indicate that the estimated annual nitrate leaching is also small, regardless of the nature of the fertilizer applied (slurries or minerals). In fallow periods, there is a water recharge in the soil, which does not occur under barley cropping. However, annual fallow included in a winter cereal rotation, high nitrate residual soil concentrations (similar to 80 mg NO3--N L-1) and a period with substantial autumn-winter rains (70-90 mm) can enhance nitrate leaching, despite the semiarid climate. es_ES
dc.description.sponsorship This research was funded by the Spanish Ministry of Economy and Competitiveness and the Spanish National Institute for Agricultural Research and Experimentation (MINECO-INIA) through the projects [RTA2013-57-C5-5] and [RTA2017-88-C3-3]. The PhD studies of D.E. Jimenez-de-Santiago were funded by the JADE-Plus scholarship from Bank of Santander-University of Lleida. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Water es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Drainage es_ES
dc.subject ECH2O probes es_ES
dc.subject Fallow system es_ES
dc.subject LEACHM es_ES
dc.subject Soil water content es_ES
dc.subject.classification EDAFOLOGIA Y QUIMICA AGRICOLA es_ES
dc.title Soil Water Dynamics in a Rainfed Mediterranean Agricultural System es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/w11040799 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2013-00057-C05-05/ES/Prácticas de manejo agrícola y de la fertilización orgánica en la dinámica del nitrógeno en cultivos de cereal: Aspectos agronómicos y ambientales./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RTA2017-00088-C03-03/ES/Nuevos retos en el uso de fertilizantes orgánicos: manejo de los nutrientes y elementos traza en distintos sistemas productivos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Jimenez-De-Santiago, DE.; Lidón, A.; Bosch-Serra, AD. (2019). Soil Water Dynamics in a Rainfed Mediterranean Agricultural System. Water. 11(4):1-21. https://doi.org/10.3390/w11040799 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/w11040799 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\391586 es_ES
dc.contributor.funder Universitat de Lleida es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Sordo-Ward, A., Granados, I., Iglesias, A., & Garrote, L. (2019). Blue Water in Europe: Estimates of Current and Future Availability and Analysis of Uncertainty. Water, 11(3), 420. doi:10.3390/w11030420 es_ES
dc.description.references Rockström, J., Karlberg, L., Wani, S. P., Barron, J., Hatibu, N., Oweis, T., … Qiang, Z. (2010). Managing water in rainfed agriculture—The need for a paradigm shift. Agricultural Water Management, 97(4), 543-550. doi:10.1016/j.agwat.2009.09.009 es_ES
dc.description.references Moret, D., Arrúe, J. L., López, M. V., & Gracia, R. (2007). Winter barley performance under different cropping and tillage systems in semiarid Aragon (NE Spain). European Journal of Agronomy, 26(1), 54-63. doi:10.1016/j.eja.2006.08.007 es_ES
dc.description.references Robinson, D. A., Campbell, C. S., Hopmans, J. W., Hornbuckle, B. K., Jones, S. B., Knight, R., … Wendroth, O. (2008). Soil Moisture Measurement for Ecological and Hydrological Watershed-Scale Observatories: A Review. Vadose Zone Journal, 7(1), 358-389. doi:10.2136/vzj2007.0143 es_ES
dc.description.references Czarnomski, N. M., Moore, G. W., Pypker, T. G., Licata, J., & Bond, B. J. (2005). Precision and accuracy of three alternative instruments for measuring soil water content in two forest soils of the Pacific Northwest. Canadian Journal of Forest Research, 35(8), 1867-1876. doi:10.1139/x05-121 es_ES
dc.description.references Lidón, A., Ramos, C., & Rodrigo, A. (1999). Comparison of drainage estimation methods in irrigated citrus orchards. Irrigation Science, 19(1), 25-36. doi:10.1007/s002710050068 es_ES
dc.description.references Jakubínský, J., Pechanec, V., Procházka, J., & Cudlín, P. (2019). Modelling of Soil Erosion and Accumulation in an Agricultural Landscape—A Comparison of Selected Approaches Applied at the Small Stream Basin Level in the Czech Republic. Water, 11(3), 404. doi:10.3390/w11030404 es_ES
dc.description.references Marinov, I., & Marinov, A. M. (2014). A Coupled Mathematical Model to Predict the Influence of Nitrogen Fertilization on Crop, Soil and Groundwater Quality. Water Resources Management, 28(15), 5231-5246. doi:10.1007/s11269-014-0664-5 es_ES
dc.description.references Porter, J. R. (1993). AFRCWHEAT2: A model of the growth and development of wheat incorporating responses to water and nitrogen. European Journal of Agronomy, 2(2), 69-82. doi:10.1016/s1161-0301(14)80136-6 es_ES
dc.description.references ADDISCOTT, T. M., & WAGENET, R. J. (1985). Concepts of solute leaching in soils: a review of modelling approaches. Journal of Soil Science, 36(3), 411-424. doi:10.1111/j.1365-2389.1985.tb00347.x es_ES
dc.description.references Bastiaanssen, W. G. M., Allen, R. G., Droogers, P., D’Urso, G., & Steduto, P. (2007). Twenty-five years modeling irrigated and drained soils: State of the art. Agricultural Water Management, 92(3), 111-125. doi:10.1016/j.agwat.2007.05.013 es_ES
dc.description.references GREENWOOD, D. J., ZHANG, K., HILTON, H. W., & THOMPSON, A. J. (2009). Opportunities for improving irrigation efficiency with quantitative models, soil water sensors and wireless technology. The Journal of Agricultural Science, 148(1), 1-16. doi:10.1017/s0021859609990487 es_ES
dc.description.references Hutson, J. L., & Wagenet, R. J. (1991). Simulating nitrogen dynamics in soils using a deterministic model. Soil Use and Management, 7(2), 74-78. doi:10.1111/j.1475-2743.1991.tb00853.x es_ES
dc.description.references Ramos, C., & Carbonell, E. A. (1991). Nitrate leaching and soil moisture prediction with the LEACHM model. Fertilizer Research, 27(2-3), 171-180. doi:10.1007/bf01051125 es_ES
dc.description.references Lidón, A., Ramos, C., Ginestar, D., & Contreras, W. (2013). Assessment of LEACHN and a simple compartmental model to simulate nitrogen dynamics in citrus orchards. Agricultural Water Management, 121, 42-53. doi:10.1016/j.agwat.2013.01.008 es_ES
dc.description.references Smith, W. N., Reynolds, W. D., Jong, R., Clemente, R. S., & Topp, E. (1995). Water Flow through Intact Soil Columns: Measurement and Simulation Using LEACHM. Journal of Environmental Quality, 24(5), 874-881. doi:10.2134/jeq1995.00472425002400050013x es_ES
dc.description.references Akinremi, O. O., Jame, Y. W., Campbell, C. A., Zentner, R. P., Chang, C., & de Jong, R. (2005). Evaluation of LEACHMN under dryland conditions. I. Simulation of water and solute transport. Canadian Journal of Soil Science, 85(2), 223-232. doi:10.4141/s03-076 es_ES
dc.description.references Plaza-Bonilla, D., Álvaro-Fuentes, J., Hansen, N. C., Lampurlanés, J., & Cantero-Martínez, C. (2013). Winter cereal root growth and aboveground–belowground biomass ratios as affected by site and tillage system in dryland Mediterranean conditions. Plant and Soil, 374(1-2), 925-939. doi:10.1007/s11104-013-1926-3 es_ES
dc.description.references WALKLEY, A., & BLACK, I. A. (1934). AN EXAMINATION OF THE DEGTJAREFF METHOD FOR DETERMINING SOIL ORGANIC MATTER, AND A PROPOSED MODIFICATION OF THE CHROMIC ACID TITRATION METHOD. Soil Science, 37(1), 29-38. doi:10.1097/00010694-193401000-00003 es_ES
dc.description.references Topp, G. C., Davis, J. L., & Annan, A. P. (1980). Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Research, 16(3), 574-582. doi:10.1029/wr016i003p00574 es_ES
dc.description.references Crank, J., & Nicolson, P. (1947). A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Mathematical Proceedings of the Cambridge Philosophical Society, 43(1), 50-67. doi:10.1017/s0305004100023197 es_ES
dc.description.references CAMPBELL, G. S. (1974). A SIMPLE METHOD FOR DETERMINING UNSATURATED CONDUCTIVITY FROM MOISTURE RETENTION DATA. Soil Science, 117(6), 311-314. doi:10.1097/00010694-197406000-00001 es_ES
dc.description.references HUTSON, J. L., & CASS, A. (1987). A retentivity function for use in soil-water simulation models. Journal of Soil Science, 38(1), 105-113. doi:10.1111/j.1365-2389.1987.tb02128.x es_ES
dc.description.references Childs, S. W., & Hanks, R. J. (1975). Model of Soil Salinity Effects on Crop Growth. Soil Science Society of America Journal, 39(4), 617-622. doi:10.2136/sssaj1975.03615995003900040016x es_ES
dc.description.references Nimah, M. N., & Hanks, R. J. (1973). Model for Estimating Soil Water, Plant, and Atmospheric Interrelations: I. Description and Sensitivity. Soil Science Society of America Journal, 37(4), 522-527. doi:10.2136/sssaj1973.03615995003700040018x es_ES
dc.description.references Jung, Y. W., Oh, D.-S., Kim, M., & Park, J.-W. (2009). Calibration of LEACHN model using LH-OAT sensitivity analysis. Nutrient Cycling in Agroecosystems, 87(2), 261-275. doi:10.1007/s10705-009-9337-9 es_ES
dc.description.references Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. (1998). Convergence Properties of the Nelder--Mead Simplex Method in Low Dimensions. SIAM Journal on Optimization, 9(1), 112-147. doi:10.1137/s1052623496303470 es_ES
dc.description.references J. D. Jabro, J. M. Jemison, Jr., L. L. Lengnick, R. H. Fox, & D. D. Fritton. (1993). Field Validation and Comparison of LEACHM and NCSWAP Models for Predicting Nitrate Leaching. Transactions of the ASAE, 36(6), 1651-1657. doi:10.13031/2013.28508 es_ES
dc.description.references Jemison, J. M., Jabro, J. D., & Fox, R. H. (1994). Evaluation of LEACHM: I. Simulation of Drainage, Bromide Leaching, and Corn Bromide Uptake. Agronomy Journal, 86(5), 843-851. doi:10.2134/agronj1994.00021962008600050018x es_ES
dc.description.references Gasch, C. K., Brown, D. J., Brooks, E. S., Yourek, M., Poggio, M., Cobos, D. R., & Campbell, C. S. (2017). A pragmatic, automated approach for retroactive calibration of soil moisture sensors using a two-step, soil-specific correction. Computers and Electronics in Agriculture, 137, 29-40. doi:10.1016/j.compag.2017.03.018 es_ES
dc.description.references Plaza-Bonilla, D., Cantero-Martínez, C., Bareche, J., Arrúe, J. L., Lampurlanés, J., & Álvaro-Fuentes, J. (2017). Do no-till and pig slurry application improve barley yield and water and nitrogen use efficiencies in rainfed Mediterranean conditions? Field Crops Research, 203, 74-85. doi:10.1016/j.fcr.2016.12.008 es_ES
dc.description.references Parsinejad, M., & Feng, Y. (2003). Field evaluation and comparison of two models for simulation of soil-water dynamics. Irrigation and Drainage, 52(2), 163-175. doi:10.1002/ird.88 es_ES
dc.description.references Scoccimarro, E., Gualdi, S., Bellucci, A., Zampieri, M., & Navarra, A. (2014). Heavy precipitation events over the Euro-Mediterranean region in a warmer climate: results from CMIP5 models. Regional Environmental Change, 16(3), 595-602. doi:10.1007/s10113-014-0712-y es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem