- -

Enhanced adsorptive properties and pseudocapacitance of flexible Polyaniline-activated carbon cloth composites synthesized electrochemically in a filter-press cell

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhanced adsorptive properties and pseudocapacitance of flexible Polyaniline-activated carbon cloth composites synthesized electrochemically in a filter-press cell

Mostrar el registro completo del ítem

Quijada, C.; Leite-Rosa, L.; Berenguer, R.; Bou-Belda, E. (2019). Enhanced adsorptive properties and pseudocapacitance of flexible Polyaniline-activated carbon cloth composites synthesized electrochemically in a filter-press cell. Materials. 12(16):1-26. https://doi.org/10.3390/ma12162516

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148010

Ficheros en el ítem

Metadatos del ítem

Título: Enhanced adsorptive properties and pseudocapacitance of flexible Polyaniline-activated carbon cloth composites synthesized electrochemically in a filter-press cell
Autor: Quijada, César Leite-Rosa, Larissa Berenguer, Raúl Bou-Belda, Eva
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera
Fecha difusión:
Resumen:
[EN] Electrochemical polymerization is known to be a suitable route to obtain conducting polymer-carbon composites uniformly covering the carbon support. In this work, we report the application of a filter-press electrochemical ...[+]
Palabras clave: Conducting polymer , Emeraldine salt state , Valence band , Flexible composite electrode , Dye adsorption kinetics , Pseudo-second order model , Capacitance , Electrical conductivity
Derechos de uso: Reconocimiento (by)
Fuente:
Materials. (eissn: 1996-1944 )
DOI: 10.3390/ma12162516
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/ma12162516
Código del Proyecto:
info:eu-repo/grantAgreement/AEI//RYC-2017-23618/
info:eu-repo/grantAgreement/MINECO//MAT2016-76595-R/ES/NUEVAS ESTRATEGIAS DE FUNCIONALIZACION ELECTROQUIMICA DE MATERIALES CARBONOSOS NANOESTRUCTURADOS PARA LA REDUCCION DE OXIGENO Y BIOSENSORES/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F087/ES/Materiales nanoestructurados en análisis químico: Nuevas estrategias de preparación de la muestra basadas en (micro)extracción en fase sólida y desarrollo de nuevos sensores electroquímicos y espectroelectroquímicos/
Agradecimientos:
This research was funded by Spanish Ministerio de Economia y Competitividad and FEDER funds, (grants MAT2016-76595-R and RYC-2017-23618) and Generalitat Valenciana (grant PROMETEO/2018/087)
Tipo: Artículo

References

Le, T.-H., Kim, Y., & Yoon, H. (2017). Electrical and Electrochemical Properties of Conducting Polymers. Polymers, 9(12), 150. doi:10.3390/polym9040150

Ates, M. (2011). Review study of electrochemical impedance spectroscopy and equivalent electrical circuits of conducting polymers on carbon surfaces. Progress in Organic Coatings, 71(1), 1-10. doi:10.1016/j.porgcoat.2010.12.011

Culebras, M., Gómez, C., & Cantarero, A. (2014). Review on Polymers for Thermoelectric Applications. Materials, 7(9), 6701-6732. doi:10.3390/ma7096701 [+]
Le, T.-H., Kim, Y., & Yoon, H. (2017). Electrical and Electrochemical Properties of Conducting Polymers. Polymers, 9(12), 150. doi:10.3390/polym9040150

Ates, M. (2011). Review study of electrochemical impedance spectroscopy and equivalent electrical circuits of conducting polymers on carbon surfaces. Progress in Organic Coatings, 71(1), 1-10. doi:10.1016/j.porgcoat.2010.12.011

Culebras, M., Gómez, C., & Cantarero, A. (2014). Review on Polymers for Thermoelectric Applications. Materials, 7(9), 6701-6732. doi:10.3390/ma7096701

Choi, H., & Yoon, H. (2015). Nanostructured Electrode Materials for Electrochemical Capacitor Applications. Nanomaterials, 5(2), 906-936. doi:10.3390/nano5020906

Kang, E. (1998). Polyaniline: A polymer with many interesting intrinsic redox states. Progress in Polymer Science, 23(2), 277-324. doi:10.1016/s0079-6700(97)00030-0

Bhadra, S., Khastgir, D., Singha, N. K., & Lee, J. H. (2009). Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science, 34(8), 783-810. doi:10.1016/j.progpolymsci.2009.04.003

Sowa, I., Wójciak-Kosior, M., Strzemski, M., Sawicki, J., Staniak, M., Dresler, S., … Latalski, M. (2018). Silica Modified with Polyaniline as a Potential Sorbent for Matrix Solid Phase Dispersion (MSPD) and Dispersive Solid Phase Extraction (d-SPE) of Plant Samples. Materials, 11(4), 467. doi:10.3390/ma11040467

Tian, S., Zhang, Z., Zhang, X., & (Ken) Ostrikov, K. (2019). Capacitative deionization using commercial activated carbon fiber decorated with polyaniline. Journal of Colloid and Interface Science, 537, 247-255. doi:10.1016/j.jcis.2018.11.025

Nasar, A., & Mashkoor, F. (2019). Application of polyaniline-based adsorbents for dye removal from water and wastewater—a review. Environmental Science and Pollution Research, 26(6), 5333-5356. doi:10.1007/s11356-018-3990-y

Mahanta, D., Madras, G., Radhakrishnan, S., & Patil, S. (2008). Adsorption of Sulfonated Dyes by Polyaniline Emeraldine Salt and Its Kinetics. The Journal of Physical Chemistry B, 112(33), 10153-10157. doi:10.1021/jp803903x

Salinas-Torres, D., Sieben, J. M., Lozano-Castelló, D., Cazorla-Amorós, D., & Morallón, E. (2013). Asymmetric hybrid capacitors based on activated carbon and activated carbon fibre–PANI electrodes. Electrochimica Acta, 89, 326-333. doi:10.1016/j.electacta.2012.11.039

Fonseca, C. P., Almeida, D. A. L., Baldan, M. R., & Ferreira, N. G. (2011). Influence of the PAni morphology deposited on the carbon fiber: An analysis of the capacitive behavior of this hybrid composite. Chemical Physics Letters, 511(1-3), 73-76. doi:10.1016/j.cplett.2011.05.042

Wang, G., Zhang, L., & Zhang, J. (2012). A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev., 41(2), 797-828. doi:10.1039/c1cs15060j

Kumar, R., Ansari, M. O., & Barakat, M. A. (2014). Adsorption of Brilliant Green by Surfactant Doped Polyaniline/MWCNTs Composite: Evaluation of the Kinetic, Thermodynamic, and Isotherm. Industrial & Engineering Chemistry Research, 53(17), 7167-7175. doi:10.1021/ie500100d

Sipahi, M., Parlak, E. A., Gul, A., Ekinci, E., Yardim, M. F., & Sarac, A. S. (2008). Electrochemical impedance study of polyaniline electrocoated porous carbon foam. Progress in Organic Coatings, 62(1), 96-104. doi:10.1016/j.porgcoat.2007.09.023

Mondal, S. K., Barai, K., & Munichandraiah, N. (2007). High capacitance properties of polyaniline by electrochemical deposition on a porous carbon substrate. Electrochimica Acta, 52(9), 3258-3264. doi:10.1016/j.electacta.2006.09.067

Salinas-Torres, D., Sieben, J. M., Lozano-Castello, D., Morallón, E., Burghammer, M., Riekel, C., & Cazorla-Amorós, D. (2012). Characterization of activated carbon fiber/polyaniline materials by position-resolved microbeam small-angle X-ray scattering. Carbon, 50(3), 1051-1056. doi:10.1016/j.carbon.2011.10.010

Chen, W.-C., Wen, T.-C., & Teng, H. (2003). Polyaniline-deposited porous carbon electrode for supercapacitor. Electrochimica Acta, 48(6), 641-649. doi:10.1016/s0013-4686(02)00734-x

Gopal, N., Asaithambi, M., Sivakumar, P., & Sivakumar, V. (2014). Adsorption studies of a direct dye using polyaniline coated activated carbon prepared from Prosopis juliflora. Journal of Water Process Engineering, 2, 87-95. doi:10.1016/j.jwpe.2014.05.008

Horng, Y.-Y., Lu, Y.-C., Hsu, Y.-K., Chen, C.-C., Chen, L.-C., & Chen, K.-H. (2010). Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance. Journal of Power Sources, 195(13), 4418-4422. doi:10.1016/j.jpowsour.2010.01.046

Cheng, Q., Tang, J., Ma, J., Zhang, H., Shinya, N., & Qin, L.-C. (2011). Polyaniline-Coated Electro-Etched Carbon Fiber Cloth Electrodes for Supercapacitors. The Journal of Physical Chemistry C, 115(47), 23584-23590. doi:10.1021/jp203852p

Xinping, H., Bo, G., Guibao, W., Jiatong, W., & Chun, Z. (2013). A new nanocomposite: Carbon cloth based polyaniline for an electrochemical supercapacitor. Electrochimica Acta, 111, 210-215. doi:10.1016/j.electacta.2013.07.226

Dong, L., Liang, G., Xu, C., Liu, W., Pan, Z.-Z., Zhou, E., … Yang, Q.-H. (2017). Multi hierarchical construction-induced superior capacitive performances of flexible electrodes for wearable energy storage. Nano Energy, 34, 242-248. doi:10.1016/j.nanoen.2017.02.031

Yu, P., Li, Y., Yu, X., Zhao, X., Wu, L., & Zhang, Q. (2013). Polyaniline Nanowire Arrays Aligned on Nitrogen-Doped Carbon Fabric for High-Performance Flexible Supercapacitors. Langmuir, 29(38), 12051-12058. doi:10.1021/la402404a

Ma, J., Tang, S., Syed, J. A., & Meng, X. (2016). Asymmetric hybrid capacitors based on novel bearded carbon fiber cloth–pinhole polyaniline electrodes with excellent energy density. RSC Advances, 6(86), 82995-83002. doi:10.1039/c6ra16291f

Tran, H. D., D’Arcy, J. M., Wang, Y., Beltramo, P. J., Strong, V. A., & Kaner, R. B. (2011). The oxidation of aniline to produce «polyaniline»: a process yielding many different nanoscale structures. J. Mater. Chem., 21(11), 3534-3550. doi:10.1039/c0jm02699a

Sapurina, I., & Stejskal, J. (2008). The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polymer International, 57(12), 1295-1325. doi:10.1002/pi.2476

Leary, J. D., Hamouda, F., Mazé, B., & Pourdeyhimi, B. (2015). Preparation of pseudocapacitor electrodes via electrodeposition of polyaniline on nonwoven carbon fiber fabrics. Journal of Applied Polymer Science, 133(16), n/a-n/a. doi:10.1002/app.43315

Rivera, F. F., de León, C. P., Nava, J. L., & Walsh, F. C. (2015). The filter-press FM01-LC laboratory flow reactor and its applications. Electrochimica Acta, 163, 338-354. doi:10.1016/j.electacta.2015.02.179

Tabti, Z., Ruiz-Rosas, R., Quijada, C., Cazorla-Amorós, D., & Morallón, E. (2014). Tailoring the Surface Chemistry of Activated Carbon Cloth by Electrochemical Methods. ACS Applied Materials & Interfaces, 6(14), 11682-11691. doi:10.1021/am502475v

López-Bernabeu, S., Ruiz-Rosas, R., Quijada, C., Montilla, F., & Morallón, E. (2016). Enhanced removal of 8-quinolinecarboxylic acid in an activated carbon cloth by electroadsorption in aqueous solution. Chemosphere, 144, 982-988. doi:10.1016/j.chemosphere.2015.09.071

Huang, H.-C., Ye, D.-Q., & Huang, B.-C. (2007). Nitrogen plasma modification of viscose-based activated carbon fibers. Surface and Coatings Technology, 201(24), 9533-9540. doi:10.1016/j.surfcoat.2007.04.029

Oh, K. W., Kim, S. H., & Kim, E. A. (2001). Improved surface characteristics and the conductivity of polyaniline-nylon 6 fabrics by plasma treatment. Journal of Applied Polymer Science, 81(3), 684-694. doi:10.1002/app.1485

Banaszczyk, J., Schwarz, A., De Mey, G., & Van Langenhove, L. (2010). The Van der Pauw method for sheet resistance measurements of polypyrrole-coated para-aramide woven fabrics. Journal of Applied Polymer Science, NA-NA. doi:10.1002/app.32186

Qu, L., Tian, M., Zhang, X., Guo, X., Zhu, S., Han, G., & Li, C. (2014). Barium sulfate/regenerated cellulose composite fiber with X-ray radiation resistance. Journal of Industrial Textiles, 45(3), 352-367. doi:10.1177/1528083714534708

Volkov, A., Tourillon, G., Lacaze, P.-C., & Dubois, J.-E. (1980). Electrochemical polymerization of aromatic amines. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 115(2), 279-291. doi:10.1016/s0022-0728(80)80332-9

Chiang, Y.-C., Lee, C.-Y., & Lee, H.-C. (2007). Surface chemistry of polyacrylonitrile- and rayon-based activated carbon fibers after post-heat treatment. Materials Chemistry and Physics, 101(1), 199-210. doi:10.1016/j.matchemphys.2006.03.007

Yang, S., Li, L., Xiao, T., Zheng, D., & Zhang, Y. (2016). Role of surface chemistry in modified ACF (activated carbon fiber)-catalyzed peroxymonosulfate oxidation. Applied Surface Science, 383, 142-150. doi:10.1016/j.apsusc.2016.04.163

Xie, Y., Wang, T., Franklin, O., & Sherwood, P. M. A. (1992). X-Ray Photoelectron Spectroscopic Studies of Carbon Fiber Surfaces. Part XVI: Core-Level and Valence-Band Studies of Pitch-Based Fibers Electrochemically Treated in Ammonium Carbonate Solution. Applied Spectroscopy, 46(4), 645-651. doi:10.1366/0003702924125005

Cotarelo, M. A., Huerta, F., Quijada, C., Mallavia, R., & Vázquez, J. L. (2006). Synthesis and Characterization of Electroactive Films Deposited from Aniline Dimers. Journal of The Electrochemical Society, 153(7), D114. doi:10.1149/1.2198010

Cotarelo, M. A., Huerta, F., Quijada, C., Pérez, J. M., del Valle, M. A., & Vázquez, J. L. (2006). Spectroscopic and Electrochemical Study of the Redox Process of Poly(2,2[sup ʹ]-dithiodianiline). Journal of The Electrochemical Society, 153(11), A2071. doi:10.1149/1.2345586

Chen, W.-C., Wen, T.-C., Hu, C.-C., & Gopalan, A. (2002). Identification of inductive behavior for polyaniline via electrochemical impedance spectroscopy. Electrochimica Acta, 47(8), 1305-1315. doi:10.1016/s0013-4686(01)00849-0

Bai, B. C., Lee, H.-U., Lee, C. W., Lee, Y.-S., & Im, J. S. (2016). N 2 plasma treatment on activated carbon fibers for toxic gas removal: Mechanism study by electrochemical investigation. Chemical Engineering Journal, 306, 260-268. doi:10.1016/j.cej.2016.07.046

Nakajima, T., Harada, M., Osawa, R., Kawagoe, T., Furukawa, Y., & Harada, I. (1989). Study on the interconversion of unit structures in polyaniline by x-ray photoelectron spectroscopy. Macromolecules, 22(6), 2644-2648. doi:10.1021/ma00196a018

Vempati, S., Ertas, Y., Babu, V. J., & Uyar, T. (2016). Optoelectronic Properties of Layered Titanate Nanostructure and Polyaniline Impregnated Devices. ChemistrySelect, 1(18), 5885-5891. doi:10.1002/slct.201601229

Bocchini, S., Castellino, M., Della Pina, C., Rajan, K., Falletta, E., & Chiolerio, A. (2018). Inkjet printed doped polyaniline: Navigating through physics and chemistry for the next generation devices. Applied Surface Science, 456, 246-258. doi:10.1016/j.apsusc.2018.06.003

Kruk, M., & Jaroniec, M. (2001). Gas Adsorption Characterization of Ordered Organic−Inorganic Nanocomposite Materials. Chemistry of Materials, 13(10), 3169-3183. doi:10.1021/cm0101069

Boyle, A., Penneau, J. F., Geniès, E., & Riekel, C. (1992). The effect of heating on polyaniline powders studied by real-time synchrotron radiation diffraction, mass spectrometry and thermal analysis. Journal of Polymer Science Part B: Polymer Physics, 30(3), 265-274. doi:10.1002/polb.1992.090300306

Chen, C.-H. (2003). Thermal and morphological studies of chemically prepared emeraldine-base-form polyaniline powder. Journal of Applied Polymer Science, 89(8), 2142-2148. doi:10.1002/app.12361

Salavagione, H. J., Cazorla-Amorós, D., Tidjane, S., Belbachir, M., Benyoucef, A., & Morallón, E. (2008). Effect of the intercalated cation on the properties of poly(o-methylaniline)/maghnite clay nanocomposites. European Polymer Journal, 44(5), 1275-1284. doi:10.1016/j.eurpolymj.2008.01.042

Trchová, M., Konyushenko, E. N., Stejskal, J., Kovářová, J., & Ćirić-Marjanović, G. (2009). The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes. Polymer Degradation and Stability, 94(6), 929-938. doi:10.1016/j.polymdegradstab.2009.03.001

Kuroki, S., Hosaka, Y., & Yamauchi, C. (2013). A solid-state NMR study of the carbonization of polyaniline. Carbon, 55, 160-167. doi:10.1016/j.carbon.2012.12.022

Lin, Y.-R., & Teng, H. (2003). A novel method for carbon modification with minute polyaniline deposition to enhance the capacitance of porous carbon electrodes. Carbon, 41(14), 2865-2871. doi:10.1016/s0008-6223(03)00424-x

Angélica del Valle, M., Díaz, F. R., Bodini, M. E., Alfonso, G., Soto, G. M., & Borrego, E. D. (2004). Electrosynthesis and characterization ofo-phenylenediamine oligomers. Polymer International, 54(3), 526-532. doi:10.1002/pi.1700

Tan, K. L., & Hameed, B. H. (2017). Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 74, 25-48. doi:10.1016/j.jtice.2017.01.024

Haerifar, M., & Azizian, S. (2013). Mixed Surface Reaction and Diffusion-Controlled Kinetic Model for Adsorption at the Solid/Solution Interface. The Journal of Physical Chemistry C, 117(16), 8310-8317. doi:10.1021/jp401571m

Hu, C.-C., Li, W.-Y., & Lin, J.-Y. (2004). The capacitive characteristics of supercapacitors consisting of activated carbon fabric–polyaniline composites in NaNO3. Journal of Power Sources, 137(1), 152-157. doi:10.1016/j.jpowsour.2004.05.040

Zhong, M., Song, Y., Li, Y., Ma, C., Zhai, X., Shi, J., … Liu, L. (2012). Effect of reduced graphene oxide on the properties of an activated carbon cloth/polyaniline flexible electrode for supercapacitor application. Journal of Power Sources, 217, 6-12. doi:10.1016/j.jpowsour.2012.05.086

Li, Y., & Chen, C. (2017). Polyaniline/carbon nanotubes-decorated activated carbon fiber felt as high-performance, free-standing and flexible supercapacitor electrodes. Journal of Materials Science, 52(20), 12348-12357. doi:10.1007/s10853-017-1291-3

Bhaumik, M., McCrindle, R., & Maity, A. (2013). Efficient removal of Congo red from aqueous solutions by adsorption onto interconnected polypyrrole–polyaniline nanofibres. Chemical Engineering Journal, 228, 506-515. doi:10.1016/j.cej.2013.05.026

Boutaleb, N., Benyoucef, A., Salavagione, H. J., Belbachir, M., & Morallón, E. (2006). Electrochemical behaviour of conducting polymers obtained into clay-catalyst layers. An in situ Raman spectroscopy study. European Polymer Journal, 42(4), 733-739. doi:10.1016/j.eurpolymj.2005.10.012

Trchová, M., Morávková, Z., Bláha, M., & Stejskal, J. (2014). Raman spectroscopy of polyaniline and oligoaniline thin films. Electrochimica Acta, 122, 28-38. doi:10.1016/j.electacta.2013.10.133

Li, H., Wang, J., Chu, Q., Wang, Z., Zhang, F., & Wang, S. (2009). Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. Journal of Power Sources, 190(2), 578-586. doi:10.1016/j.jpowsour.2009.01.052

Snook, G. A., Kao, P., & Best, A. S. (2011). Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources, 196(1), 1-12. doi:10.1016/j.jpowsour.2010.06.084

Özcan, A. S., & Özcan, A. (2004). Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite. Journal of Colloid and Interface Science, 276(1), 39-46. doi:10.1016/j.jcis.2004.03.043

Porkodi, K., & Vasanth Kumar, K. (2007). Equilibrium, kinetics and mechanism modeling and simulation of basic and acid dyes sorption onto jute fiber carbon: Eosin yellow, malachite green and crystal violet single component systems. Journal of Hazardous Materials, 143(1-2), 311-327. doi:10.1016/j.jhazmat.2006.09.029

García-Mateos, F. J., Ruiz-Rosas, R., Marqués, M. D., Cotoruelo, L. M., Rodríguez-Mirasol, J., & Cordero, T. (2015). Removal of paracetamol on biomass-derived activated carbon: Modeling the fixed bed breakthrough curves using batch adsorption experiments. Chemical Engineering Journal, 279, 18-30. doi:10.1016/j.cej.2015.04.144

Ayad, M. M., & El-Nasr, A. A. (2010). Adsorption of Cationic Dye (Methylene Blue) from Water Using Polyaniline Nanotubes Base. The Journal of Physical Chemistry C, 114(34), 14377-14383. doi:10.1021/jp103780w

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem