- -

A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez Martínez, Francisco es_ES
dc.contributor.author Rupérez Moreno, María José es_ES
dc.contributor.author Martínez-Sober, M. es_ES
dc.contributor.author Solves Llorens, Juan Antonio es_ES
dc.contributor.author Lorente, D. es_ES
dc.contributor.author Serrano-Lopez, A.J. es_ES
dc.contributor.author Martinez-Sanchis, Sandra es_ES
dc.contributor.author Monserrat, C. es_ES
dc.contributor.author Martin-Guerrero, J.D. es_ES
dc.date.accessioned 2020-07-15T03:32:41Z
dc.date.available 2020-07-15T03:32:41Z
dc.date.issued 2017-11-01 es_ES
dc.identifier.issn 0010-4825 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148011
dc.description.abstract [EN] This work presents a data-driven method to simulate, in real-time, the biomechanical behavior of the breast tissues in some image-guided interventions such as biopsies or radiotherapy dose delivery as well as to speed up multimodal registration algorithms. Ten real breasts were used for this work. Their deformation due to the displacement of two compression plates was simulated off-line using the finite element (FE) method. Three machine learning models were trained with the data from those simulations. Then, they were used to predict in real-time the deformation of the breast tissues during the compression. The models were a decision tree and two tree-based ensemble methods (extremely randomized trees and random forest). Two different experimental setups were designed to validate and study the performance of these models under different conditions. The mean 3D Euclidean distance between nodes predicted by the models and those extracted from the FE simulations was calculated to assess the performance of the models in the validation set. The experiments proved that extremely randomized trees performed better than the other two models. The mean error committed by the three models in the prediction of the nodal displacements was under 2 man, a threshold usually set for clinical applications. The time needed for breast compression prediction is sufficiently short to allow its use in real-time (< 0.2 s). es_ES
dc.description.sponsorship This work has been funded by the Spanish Ministry of Economy and Competitiveness (MINECO) through research projects TIN2014-52033-R and DPI2013-40859-R with the support of European FEDER funds. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers in Biology and Medicine es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Breast biomechanics es_ES
dc.subject Finite element methods es_ES
dc.subject Machine learning es_ES
dc.subject Modeling es_ES
dc.subject Breast compression es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.compbiomed.2017.09.019 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2014-52033-R/ES/SIMULACION DEL COMPORTAMIENTO BIOMECANICO DEL TEJIDO BLANDO EN TIEMPO REAL MEDIANTE INTELIGENCIA COMPUTACIONAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2013-40859-R/ES/SISTEMA DE SEGUIMIENTO DE LESIONES TUMORALES HEPATICAS MEDIANTE APROXIMACIONES BIOMECANICAS PARA DIAGNOSIS TEMPRANA Y PLANIFICACION DE TRATAMIENTO./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Martínez Martínez, F.; Rupérez Moreno, MJ.; Martínez-Sober, M.; Solves Llorens, JA.; Lorente, D.; Serrano-Lopez, A.; Martinez-Sanchis, S.... (2017). A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time. Computers in Biology and Medicine. 90:116-124. https://doi.org/10.1016/j.compbiomed.2017.09.019 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.compbiomed.2017.09.019 es_ES
dc.description.upvformatpinicio 116 es_ES
dc.description.upvformatpfin 124 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 90 es_ES
dc.identifier.pmid 28982035 es_ES
dc.relation.pasarela S\344757 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem