Mostrar el registro sencillo del ítem
dc.contributor.author | Peng, Guiming | es_ES |
dc.contributor.author | Albero-Sancho, Josep | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.contributor.author | Shalom, Menny | es_ES |
dc.date.accessioned | 2020-07-15T03:32:46Z | |
dc.date.available | 2020-07-15T03:32:46Z | |
dc.date.issued | 2018-11-26 | es_ES |
dc.identifier.issn | 1433-7851 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/148013 | |
dc.description | "This is the peer reviewed version of the following article: Peng, Guiming, Josep Albero, Hermenegildo Garcia, and Menny Shalom. 2018. A Water-Splitting Carbon Nitride Photoelectrochemical Cell with Efficient Charge Separation and Remarkably Low Onset Potential. Angewandte Chemie International Edition 57 (48). Wiley: 15807 11. doi:10.1002/anie.201810225, which has been published in final form at https://doi.org/10.1002/anie.201810225. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." | es_ES |
dc.description.abstract | [EN] A simple method to grow a closely packed carbon nitride (CN) film by the crystallization of CN monomers on a conductive substrate followed by a thermal condensation is reported. The as-synthesized CN exhibits excellent performance as photoanode material in a photoelectrochemical Detailed (photo)electrochemical and transient absorption measurements indicate excellent charge separation properties, high hole-extraction efficiency (up to 50%), a long electron lifetime, and low amount of defect slates below the CN conduction band. Consequently, the CN photoanode exhibits a markedly low overpotential of 0.25 V versus reversible hydrogen electrode (RHE), which is comparable with the state-of-the-art metal-based photoanodes, an impressive photocurrent density of 116 mu A cm(-2) at 1.23 V versus RHE in an alkaline solution without sacrificial agent, as well as excellent stability over a wide pH range (0-13). | es_ES |
dc.description.sponsorship | This work is supported by the Israel Science Foundation, grant No. 1161/17. G.P. thanks the National Natural Science Foundation of China (No. 51802043) and Natural Science Foundation of Jiangxi Province (No. 20171BAB213010). J.A. thanks the Technical University of Valencia for a postdoctoral research associate contract. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Angewandte Chemie International Edition | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Carbon nitride | es_ES |
dc.subject | Crystalline 2D materials | es_ES |
dc.subject | Photoanode | es_ES |
dc.subject | Photoelectrochemical cells | es_ES |
dc.subject | Cater splitting | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | A Water-Splitting Carbon Nitride Photoelectrochemical Cell with Efficient Charge Separation and Remarkably Low Onset Potential | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/anie.201810225 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISF//1161%2F17/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//51802043/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Natural Science Foundation of Jiangxi Province//20171BAB213010/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Peng, G.; Albero-Sancho, J.; García Gómez, H.; Shalom, M. (2018). A Water-Splitting Carbon Nitride Photoelectrochemical Cell with Efficient Charge Separation and Remarkably Low Onset Potential. Angewandte Chemie International Edition. 57(48):15807-15811. https://doi.org/10.1002/anie.201810225 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/anie.201810225 | es_ES |
dc.description.upvformatpinicio | 15807 | es_ES |
dc.description.upvformatpfin | 15811 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 57 | es_ES |
dc.description.issue | 48 | es_ES |
dc.identifier.pmid | 30328234 | es_ES |
dc.relation.pasarela | S\382617 | es_ES |
dc.contributor.funder | Israel Science Foundation | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | National Natural Science Foundation of China | es_ES |
dc.contributor.funder | Natural Science Foundation of Jiangxi Province | es_ES |
dc.description.references | Liu, J., Wang, H., Chen, Z. P., Moehwald, H., Fiechter, S., van de Krol, R., … Antonietti, M. (2014). Microcontact-Printing-Assisted Access of Graphitic Carbon Nitride Films with Favorable Textures toward Photoelectrochemical Application. Advanced Materials, 27(4), 712-718. doi:10.1002/adma.201404543 | es_ES |
dc.description.references | Angew. Chem. 2018 https://doi.org/10.1002/ange.201806514 | es_ES |
dc.description.references | Ruan, Q., Luo, W., Xie, J., Wang, Y., Liu, X., Bai, Z., … Tang, J. (2017). A Nanojunction Polymer Photoelectrode for Efficient Charge Transport and Separation. Angewandte Chemie International Edition, 56(28), 8221-8225. doi:10.1002/anie.201703372 | es_ES |
dc.description.references | Ruan, Q., Luo, W., Xie, J., Wang, Y., Liu, X., Bai, Z., … Tang, J. (2017). A Nanojunction Polymer Photoelectrode for Efficient Charge Transport and Separation. Angewandte Chemie, 129(28), 8333-8337. doi:10.1002/ange.201703372 | es_ES |
dc.description.references | Wang, Y., Wang, X., & Antonietti, M. (2011). Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. Angewandte Chemie International Edition, 51(1), 68-89. doi:10.1002/anie.201101182 | es_ES |
dc.description.references | Wang, Y., Wang, X., & Antonietti, M. (2011). Polymeres graphitisches Kohlenstoffnitrid als heterogener Organokatalysator: von der Photochemie über die Vielzweckkatalyse hin zur nachhaltigen Chemie. Angewandte Chemie, 124(1), 70-92. doi:10.1002/ange.201101182 | es_ES |
dc.description.references | Bian, J., Li, Q., Huang, C., Li, J., Guo, Y., Zaw, M., & Zhang, R.-Q. (2015). Thermal vapor condensation of uniform graphitic carbon nitride films with remarkable photocurrent density for photoelectrochemical applications. Nano Energy, 15, 353-361. doi:10.1016/j.nanoen.2015.04.012 | es_ES |
dc.description.references | Bian, J., Xi, L., Huang, C., Lange, K. M., Zhang, R.-Q., & Shalom, M. (2016). Efficiency Enhancement of Carbon Nitride Photoelectrochemical Cells via Tailored Monomers Design. Advanced Energy Materials, 6(12), 1600263. doi:10.1002/aenm.201600263 | es_ES |
dc.description.references | Peng, G., Xing, L., Barrio, J., Volokh, M., & Shalom, M. (2017). A General Synthesis of Porous Carbon Nitride Films with Tunable Surface Area and Photophysical Properties. Angewandte Chemie International Edition, 57(5), 1186-1192. doi:10.1002/anie.201711669 | es_ES |
dc.description.references | Peng, G., Xing, L., Barrio, J., Volokh, M., & Shalom, M. (2017). A General Synthesis of Porous Carbon Nitride Films with Tunable Surface Area and Photophysical Properties. Angewandte Chemie, 130(5), 1200-1206. doi:10.1002/ange.201711669 | es_ES |
dc.description.references | Zhang, Y., Thomas, A., Antonietti, M., & Wang, X. (2009). Activation of Carbon Nitride Solids by Protonation: Morphology Changes, Enhanced Ionic Conductivity, and Photoconduction Experiments. Journal of the American Chemical Society, 131(1), 50-51. doi:10.1021/ja808329f | es_ES |
dc.description.references | Lou, S., Zhou, Z., Shen, Y., Zhan, Z., Wang, J., Liu, S., & Zhang, Y. (2016). Comparison Study of the Photoelectrochemical Activity of Carbon Nitride with Different Photoelectrode Configurations. ACS Applied Materials & Interfaces, 8(34), 22287-22294. doi:10.1021/acsami.6b09699 | es_ES |
dc.description.references | Zhang, J., Zhang, M., Lin, L., & Wang, X. (2015). Sol Processing of Conjugated Carbon Nitride Powders for Thin-Film Fabrication. Angewandte Chemie International Edition, 54(21), 6297-6301. doi:10.1002/anie.201501001 | es_ES |
dc.description.references | Zhang, J., Zhang, M., Lin, L., & Wang, X. (2015). Sol Processing of Conjugated Carbon Nitride Powders for Thin-Film Fabrication. Angewandte Chemie, 127(21), 6395-6399. doi:10.1002/ange.201501001 | es_ES |
dc.description.references | Merschjann, C., Tschierlei, S., Tyborski, T., Kailasam, K., Orthmann, S., Hollmann, D., … Lochbrunner, S. (2015). Complementing Graphenes: 1D Interplanar Charge Transport in Polymeric Graphitic Carbon Nitrides. Advanced Materials, 27(48), 7993-7999. doi:10.1002/adma.201503448 | es_ES |
dc.description.references | Godin, R., Wang, Y., Zwijnenburg, M. A., Tang, J., & Durrant, J. R. (2017). Time-Resolved Spectroscopic Investigation of Charge Trapping in Carbon Nitrides Photocatalysts for Hydrogen Generation. Journal of the American Chemical Society, 139(14), 5216-5224. doi:10.1021/jacs.7b01547 | es_ES |
dc.description.references | Xu, J., Wang, H., Zhang, C., Yang, X., Cao, S., Yu, J., & Shalom, M. (2017). From Millimeter to Subnanometer: Vapor-Solid Deposition of Carbon Nitride Hierarchical Nanostructures Directed by Supramolecular Assembly. Angewandte Chemie International Edition, 56(29), 8426-8430. doi:10.1002/anie.201611946 | es_ES |
dc.description.references | Xu, J., Wang, H., Zhang, C., Yang, X., Cao, S., Yu, J., & Shalom, M. (2017). From Millimeter to Subnanometer: Vapor-Solid Deposition of Carbon Nitride Hierarchical Nanostructures Directed by Supramolecular Assembly. Angewandte Chemie, 129(29), 8546-8550. doi:10.1002/ange.201611946 | es_ES |
dc.description.references | Zhang, J., Zhang, M., Zhang, G., & Wang, X. (2012). Synthesis of Carbon Nitride Semiconductors in Sulfur Flux for Water Photoredox Catalysis. ACS Catalysis, 2(6), 940-948. doi:10.1021/cs300167b | es_ES |
dc.description.references | Xiong, W., Chen, S., Huang, M., Wang, Z., Lu, Z., & Zhang, R. (2018). Crystal‐Face Tailored Graphitic Carbon Nitride Films for High‐Performance Photoelectrochemical Cells. ChemSusChem, 11(15), 2497-2501. doi:10.1002/cssc.201801295 | es_ES |
dc.description.references | Lee, D. K., & Choi, K.-S. (2017). Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nature Energy, 3(1), 53-60. doi:10.1038/s41560-017-0057-0 | es_ES |
dc.description.references | Kuang, Y., Jia, Q., Ma, G., Hisatomi, T., Minegishi, T., Nishiyama, H., … Domen, K. (2016). Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalyst regeneration. Nature Energy, 2(1). doi:10.1038/nenergy.2016.191 | es_ES |
dc.description.references | Kim, T. W., Ping, Y., Galli, G. A., & Choi, K.-S. (2015). Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting. Nature Communications, 6(1). doi:10.1038/ncomms9769 | es_ES |
dc.description.references | Peng, G., Volokh, M., Tzadikov, J., Sun, J., & Shalom, M. (2018). Carbon Nitride/Reduced Graphene Oxide Film with Enhanced Electron Diffusion Length: An Efficient Photo-Electrochemical Cell for Hydrogen Generation. Advanced Energy Materials, 8(23), 1800566. doi:10.1002/aenm.201800566 | es_ES |
dc.description.references | Hara, K. O., & Usami, N. (2013). Theory of open-circuit voltage and the driving force of charge separation in pn-junction solar cells. Journal of Applied Physics, 114(15), 153101. doi:10.1063/1.4825046 | es_ES |
dc.description.references | Shah, A. (1999). Photovoltaic Technology: The Case for Thin-Film Solar Cells. Science, 285(5428), 692-698. doi:10.1126/science.285.5428.692 | es_ES |
dc.description.references | Albero, J., Barea, E. M., Xu, J., Mora-Seró, I., Garcia, H., & Shalom, M. (2016). Toward Efficient Carbon Nitride Photoelectrochemical Cells: Understanding Charge Transfer Processes. Advanced Materials Interfaces, 4(1), 1600265. doi:10.1002/admi.201600265 | es_ES |
dc.description.references | Kasap, H., Caputo, C. A., Martindale, B. C. M., Godin, R., Lau, V. W., Lotsch, B. V., … Reisner, E. (2016). Solar-Driven Reduction of Aqueous Protons Coupled to Selective Alcohol Oxidation with a Carbon Nitride–Molecular Ni Catalyst System. Journal of the American Chemical Society, 138(29), 9183-9192. doi:10.1021/jacs.6b04325 | es_ES |
dc.description.references | Kuriki, R., Matsunaga, H., Nakashima, T., Wada, K., Yamakata, A., Ishitani, O., & Maeda, K. (2016). Nature-Inspired, Highly Durable CO2 Reduction System Consisting of a Binuclear Ruthenium(II) Complex and an Organic Semiconductor Using Visible Light. Journal of the American Chemical Society, 138(15), 5159-5170. doi:10.1021/jacs.6b01997 | es_ES |
dc.description.references | Zhang, W., Albero, J., Xi, L., Lange, K. M., Garcia, H., Wang, X., & Shalom, M. (2017). One-Pot Synthesis of Nickel-Modified Carbon Nitride Layers Toward Efficient Photoelectrochemical Cells. ACS Applied Materials & Interfaces, 9(38), 32667-32677. doi:10.1021/acsami.7b08022 | es_ES |