Mostrar el registro sencillo del ítem
dc.contributor.author | Jorda Mora, Enrique | es_ES |
dc.contributor.author | Peralta, A.M. | es_ES |
dc.date.accessioned | 2020-07-16T03:31:39Z | |
dc.date.available | 2020-07-16T03:31:39Z | |
dc.date.issued | 2017-09 | es_ES |
dc.identifier.issn | 0378-620X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/148095 | |
dc.description.abstract | [EN] Let L be a locally compact Hausdorff space. Suppose A is a -algebra with the property that every weak-2-local derivation on A is a (linear) derivation. We prove that every weak-2-local derivation on is a (linear) derivation. Among the consequences we establish that if B is an atomic von Neumann algebra or a compact -algebra, then every weak-2-local derivation on is a linear derivation. We further show that, for a general von Neumann algebra M, every 2-local derivation on is a linear derivation. We also prove several results representing derivations on and on as inner derivations determined by multipliers. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Integral Equations and Operator Theory | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Derivation | es_ES |
dc.subject | 2-Local linear map | es_ES |
dc.subject | 2-Local *-derivation | es_ES |
dc.subject | 2-Local derivation | es_ES |
dc.subject | Weak-2-local mapping | es_ES |
dc.subject | Weak-2-local derivation | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Inner Derivations and Weak-2-Local Derivations on the C*-Algebra C-0(L, A) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00020-017-2390-x | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACOMP%2F2015%2F186/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F054/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Jorda Mora, E.; Peralta, A. (2017). Inner Derivations and Weak-2-Local Derivations on the C*-Algebra C-0(L, A). Integral Equations and Operator Theory. 89(1):89-110. https://doi.org/10.1007/s00020-017-2390-x | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00020-017-2390-x | es_ES |
dc.description.upvformatpinicio | 89 | es_ES |
dc.description.upvformatpfin | 110 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 89 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\376178 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Akemann, C.A., Elliott, G.E., Pedersen, G.K., Tomiyama, J.: Derivations and multipliers of $$\text{ C }^*$$ C ∗ -algebras. Am. J. Math. 98(3), 679–708 (1976) | es_ES |
dc.description.references | Akemann, C.A., Johnson, B.E.: Derivations of non-separable $$\text{ C }^*$$ C ∗ -algebras. J. Funct. Anal. 33, 311–331 (1979) | es_ES |
dc.description.references | Akemann, C.A., Pedersen, G.K., Tomiyama, J.: Multipliers of $$\text{ C }^*$$ C ∗ -algebras. J. Funct. Anal. 13, 277–301 (1973) | es_ES |
dc.description.references | Archbold, R.J.: On the norm of an inner derivation of a $$\text{ C }^*$$ C ∗ -algebra. Math. Proc. Camb. Philos. Soc. 84, 273–291 (1978) | es_ES |
dc.description.references | Archbold, R.J., Somerset, D.W.B.: Inner derivations and primal ideals of $$\text{ C }^*$$ C ∗ -algebras. II. Proc. Lond. Math. Soc. (3) 88(1), 225–250 (2004) | es_ES |
dc.description.references | Ayupov, S., Arzikulov, F.N.: 2-Local derivations on algebras of matrix-valued functions on a compact, preprint (2015). arXiv:1509.05701v1 | es_ES |
dc.description.references | Ayupov, Sh, Kudaybergenov, K.K.: $$2$$ 2 -local derivations on von Neumann algebras. Positivity 19(3), 445–455 (2015). doi: 10.1007/s11117-014-0307-3 | es_ES |
dc.description.references | Burgos, M., Cabello, J.C., Peralta, A.M.: Weak-local triple derivations on $$\text{ C }^*$$ C ∗ -algebras and JB $$^*$$ ∗ -triples. Linear Algebra Appl. 506, 614–627 (2016). doi: 10.1016/j.laa.2016.06.042 | es_ES |
dc.description.references | Cabello, J.C., Peralta, A.M.: Weak-2-local symmetric maps on $$\text{ C }^*$$ C ∗ -algebras. Linear Algebra Appl. 494, 32–43 (2016). doi: 10.1016/j.laa.2015.12.024 | es_ES |
dc.description.references | Cabello, J.C., Peralta, A.M.: On a generalized Šemrl’s theorem for weak-2-local derivations on $$B(H)$$ B ( H ) . Banach J. Math. Anal. 11(2), 382–397 (2017) | es_ES |
dc.description.references | Elliott, G.A.: Some $$\text{ C }^*$$ C ∗ -algebras with outer derivations. III. Ann. Math. (2) 106(1), 121–143 (1977) | es_ES |
dc.description.references | Elliott, G.A.: On derivations of AW $$^*$$ ∗ -algebras. Tohoku Math. J. 30, 263–276 (1978) | es_ES |
dc.description.references | Essaleh, A.B.A., Peralta, A.M., Ramírez, M.I.: Weak-local derivations and homomorphisms on $$\text{ C }^*$$ C ∗ -algebras. Linear Multilinear Algebra 64(2), 169–186 (2016) | es_ES |
dc.description.references | Essaleh, A.B.A., Peralta, A.M., Ramírez, M.I.: CORRIGENDUM: Weak-local derivations and homomorphisms on $$\text{ C }^*$$ C ∗ -algebras. Linear Multilinear Algebra 64(5), 1009–1010 (2016) | es_ES |
dc.description.references | Gajendragadkar, P.: Norm of a derivation of a von Neumann algebra. Trans. Am. Math. Soc. 170, 165–170 (1972) | es_ES |
dc.description.references | Gogić, I.: Derivations of subhomogeneous $$\text{ C }^*$$ C ∗ -algebras are implemented by local multipliers. Proc. Am. Math. Soc. 141(11), 3925–3928 (2013) | es_ES |
dc.description.references | Gogić, I.: The local multiplier algebra of a $$\text{ C }^*$$ C ∗ -algebra with finite dimensional irreducible representations. J. Math. Anal. Appl. 408(2), 789–794 (2013) | es_ES |
dc.description.references | Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis. Vol. II: Structure and Analysis for Compact Groups. Analysis on Locally Compact Abelian Groups. Springer, New York, Berlin (1970) | es_ES |
dc.description.references | Jordá, E., Peralta, A.M.: Stability of derivations under weak-2-local continuous perturbations. Aequationes Math. 91, 99–114 (2017) | es_ES |
dc.description.references | Kadison, R.V., Lance, E.C., Ringrose, J.R.: Derivations and automorphisms of operator algebras II. J. Funct. Anal. 1, 204–221 (1967) | es_ES |
dc.description.references | Kyle, J.: Norms of derivations. J. Lond. Math. Soc. II Ser. 16, 297–312 (1977) | es_ES |
dc.description.references | Kowalski, S., Słodkowski, Z.: A characterization of multiplicative linear functionals in Banach algebras. Stud. Math 67, 215–223 (1980) | es_ES |
dc.description.references | Lance, E.C.: Automorphisms of certain operator algebras. Am. J. Math. 91, 160–174 (1969) | es_ES |
dc.description.references | Michael, E.: Continuous selections I. Ann. Math. 63, 361–382 (1956) | es_ES |
dc.description.references | Niazi, M., Peralta, A.M.: Weak-2-local derivations on $$\mathbb{M}_n$$ M n . FILOMAT 31(6), 1687–1708 (2017) | es_ES |
dc.description.references | Niazi, M., Peralta, A.M.: Weak-2-local $$^*$$ ∗ -derivations on $$B(H)$$ B ( H ) are linear $$^*$$ ∗ -derivations. Linear Algebra Appl. 487, 276–300 (2015) | es_ES |
dc.description.references | Pedersen, G.K.: Approximating derivations on ideals of $$\text{ C }^*$$ C ∗ -algebras. Invent. Math. 45, 299–305 (1978) | es_ES |
dc.description.references | Ringrose, J.R.: Automatic continuity of derivations of operator algebras. J. Lond. Math. Soc. 2(5), 432–438 (1972) | es_ES |
dc.description.references | Sakai, S.: On a conjecture of Kaplansky. Tohoku Math. J. 12, 31–33 (1960) | es_ES |
dc.description.references | Sakai, S.: $$\text{ C }^*$$ C ∗ -Algebras and $$W^*$$ W ∗ -Algebras. Springer, Berlin (1971) | es_ES |
dc.description.references | Sakai, S.: Derivations of simple $$\text{ C }^*$$ C ∗ -algebras. II. Bull. Soc. Math. Fr. 99, 259–263 (1971) | es_ES |
dc.description.references | Šemrl, P.: Local automorphisms and derivations on $$B(H)$$ B ( H ) . Proc. Am. Math. Soc. 125, 2677–2680 (1997) | es_ES |
dc.description.references | Somerset, D.W.B.: The inner derivations and the primitive ideal space of a $$\text{ C }^*$$ C ∗ -algebra. J. Oper. Theory 29, 307–321 (1993) | es_ES |
dc.description.references | Somerset, D.W.B.: Inner derivations and primal ideals of $$\text{ C }^*$$ C ∗ -algebras. J. Lond. Math. Soc. 2(50), 568–580 (1994) | es_ES |
dc.description.references | Somerset, D.W.B.: The local multiplier algebra of a $$\text{ C }^*$$ C ∗ -algebra. II. J. Funct. Anal. 171(2), 308–330 (2000) | es_ES |
dc.description.references | Stampfli, J.G.: The norm of a derivation. Pac. J. Math. 33(3), 737–747 (1970) | es_ES |
dc.description.references | Takesaki, M.: Theory of Operator Algebras I. Springer, Berlin (1979) | es_ES |
dc.description.references | Zsido, L.: The norm of a derivation in a W $$^*$$ ∗ -algebra. Proc. Am. Math. Soc. 38, 147–150 (1973) | es_ES |