- -

Random differential equations with discrete delay

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Random differential equations with discrete delay

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Calatayud-Gregori, Julia es_ES
dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Jornet-Sanz, Marc es_ES
dc.date.accessioned 2020-07-16T03:31:42Z
dc.date.available 2020-07-16T03:31:42Z
dc.date.issued 2019-09-03 es_ES
dc.identifier.issn 0736-2994 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148096
dc.description.abstract [EN] In this article, we study random differential equations with discrete delay with initial condition The uncertainty in the problem is reflected via the outcome omega. The initial condition g(t) is a stochastic process. The term x(t) is a stochastic process that solves the random differential equation with delay in a probabilistic sense. In our case, we use the random calculus approach. We extend the classical Picard theorem for deterministic ordinary differential equations to calculus for random differential equations with delay, via Banach fixed-point theorem. We also relate solutions with sample-path solutions. Finally, we utilize the theoretical ideas to solve the random autonomous linear differential equation with discrete delay. es_ES
dc.description.sponsorship This work has been supported by the Spanish Ministerio de Economía y Competitividad grant MTM2017 89664 P es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Stochastic Analysis and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Random differential es_ES
dc.subject Equation with discrete delay es_ES
dc.subject Stochastic process es_ES
dc.subject Lp random calculus es_ES
dc.subject Banach fixed-point theorem es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Random differential equations with discrete delay es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/07362994.2019.1608833 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Calatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M. (2019). Random differential equations with discrete delay. Stochastic Analysis and Applications. 37(5):699-707. https://doi.org/10.1080/07362994.2019.1608833 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/07362994.2019.1608833 es_ES
dc.description.upvformatpinicio 699 es_ES
dc.description.upvformatpfin 707 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 37 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\382919 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Fridman, E., & Shaikhet, L. (2017). Stabilization by using artificial delays: An LMI approach. Automatica, 81, 429-437. doi:10.1016/j.automatica.2017.04.015 es_ES
dc.description.references Shaikhet, L., & Korobeinikov, A. (2015). Stability of a stochastic model for HIV-1 dynamics within a host. Applicable Analysis, 95(6), 1228-1238. doi:10.1080/00036811.2015.1058363 es_ES
dc.description.references Caraballo, T., Colucci, R., & Guerrini, L. (2018). On a predator prey model with nonlinear harvesting and distributed delay. Communications on Pure & Applied Analysis, 17(6), 2703-2727. doi:10.3934/cpaa.2018128 es_ES
dc.description.references Caraballo, T., J. Garrido-Atienza, M., Schmalfuss, B., & Valero, J. (2017). Attractors for a random evolution equation with infinite memory: Theoretical results. Discrete & Continuous Dynamical Systems - B, 22(5), 1779-1800. doi:10.3934/dcdsb.2017106 es_ES
dc.description.references Krapivsky, P. L., Luck, J. M., & Mallick, K. (2011). On stochastic differential equations with random delay. Journal of Statistical Mechanics: Theory and Experiment, 2011(10), P10008. doi:10.1088/1742-5468/2011/10/p10008 es_ES
dc.description.references Liu, S., Debbouche, A., & Wang, J. (2017). On the iterative learning control for stochastic impulsive differential equations with randomly varying trial lengths. Journal of Computational and Applied Mathematics, 312, 47-57. doi:10.1016/j.cam.2015.10.028 es_ES
dc.description.references Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009 es_ES
dc.description.references Slama, H., El-Bedwhey, N. A., El-Depsy, A., & Selim, M. M. (2017). Solution of the finite Milne problem in stochastic media with RVT Technique. The European Physical Journal Plus, 132(12). doi:10.1140/epjp/i2017-11763-6 es_ES
dc.description.references Nouri, K., Ranjbar, H., & Torkzadeh, L. (2019). Modified stochastic theta methods by ODEs solvers for stochastic differential equations. Communications in Nonlinear Science and Numerical Simulation, 68, 336-346. doi:10.1016/j.cnsns.2018.08.013 es_ES
dc.description.references Lupulescu, V., O’Regan, D., & ur Rahman, G. (2014). Existence results for random fractional differential equations. Opuscula Mathematica, 34(4), 813. doi:10.7494/opmath.2014.34.4.813 es_ES
dc.description.references Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2 es_ES
dc.description.references Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061 es_ES
dc.description.references Granas, A., & Dugundji, J. (2003). Fixed Point Theory. Springer Monographs in Mathematics. doi:10.1007/978-0-387-21593-8 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem