- -

A coordinated control strategy for insulin and glucagon delivery in type 1 diabetes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A coordinated control strategy for insulin and glucagon delivery in type 1 diabetes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Herrero, P. es_ES
dc.contributor.author Bondía Company, Jorge es_ES
dc.contributor.author Oliver, N. es_ES
dc.contributor.author Georgiou, P. es_ES
dc.date.accessioned 2020-07-17T03:31:33Z
dc.date.available 2020-07-17T03:31:33Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1025-5842 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148174
dc.description.abstract [EN] Type 1 diabetes is an autoimmune condition characterised by a pancreatic insulin secretion deficit, resulting in high blood glucose concentrations, which can lead to micro- and macrovascular complications. Type 1 diabetes also leads to impaired glucagon production by the pancreatic -cells, which acts as a counter-regulatory hormone to insulin. A closed-loop system for automatic insulin and glucagon delivery, also referred to as an artificial pancreas, has the potential to reduce the self-management burden of type 1 diabetes and reduce the risk of hypo- and hyperglycemia. To date, bihormonal closed-loop systems for glucagon and insulin delivery have been based on two independent controllers. However, in physiology, the secretion of insulin and glucagon in the body is closely interconnected by paracrine and endocrine associations. In this work, we present a novel biologically-inspired glucose control strategy that accounts for such coordination. An in silico study using an FDA-accepted type 1 simulator was performed to evaluate the proposed coordinated control strategy compared to its non-coordinated counterpart, as well as an insulin-only version of the controller. The proposed coordinated strategy achieves a reduction of hyperglycemia without increasing hypoglycemia, when compared to its non-coordinated counterpart. es_ES
dc.description.sponsorship This work was supported by the Wellcome Trust; the Spanish Ministry of Economy and Competitiveness (MINECO) [grant number DPI2016-78831-C2-1-R]; the EU through FEDER funds. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Computer Methods in Biomechanics & Biomedical Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Artificial pancreas es_ES
dc.subject Diabetes es_ES
dc.subject Closed-loop control es_ES
dc.subject Bihormonal control es_ES
dc.subject Glucose control es_ES
dc.subject Insulin delivery es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title A coordinated control strategy for insulin and glucagon delivery in type 1 diabetes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/10255842.2017.1378352 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2016-78831-C2-1-R/ES/SOLUCIONES PARA LA MEJORA DE LA EFICIENCIA Y SEGURIDAD DEL PANCREAS ARTIFICIAL MEDIANTE ARQUITECTURAS DE CONTROL MULTIVARIABLE TOLERANTES A FALLOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Herrero, P.; Bondía Company, J.; Oliver, N.; Georgiou, P. (2017). A coordinated control strategy for insulin and glucagon delivery in type 1 diabetes. Computer Methods in Biomechanics & Biomedical Engineering. 20(13):1474-1482. https://doi.org/10.1080/10255842.2017.1378352 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/10255842.2017.1378352 es_ES
dc.description.upvformatpinicio 1474 es_ES
dc.description.upvformatpfin 1482 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 13 es_ES
dc.identifier.pmid 28929796 es_ES
dc.identifier.pmcid PMC6522378 es_ES
dc.relation.pasarela S\353467 es_ES
dc.contributor.funder Wellcome Trust es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Brazeau, A. S., Mircescu, H., Desjardins, K., Leroux, C., Strychar, I., Ekoé, J. M., & Rabasa-Lhoret, R. (2013). Carbohydrate counting accuracy and blood glucose variability in adults with type 1 diabetes. Diabetes Research and Clinical Practice, 99(1), 19-23. doi:10.1016/j.diabres.2012.10.024 es_ES
dc.description.references Dalla Man, C., Rizza, R. A., & Cobelli, C. (2007). Meal Simulation Model of the Glucose-Insulin System. IEEE Transactions on Biomedical Engineering, 54(10), 1740-1749. doi:10.1109/tbme.2007.893506 es_ES
dc.description.references Epidemiology of severe hypoglycemia in the diabetes control and complications trial. (1991). The American Journal of Medicine, 90(4), 450-459. doi:10.1016/0002-9343(91)80085-z es_ES
dc.description.references Doyle, F. J., Huyett, L. M., Lee, J. B., Zisser, H. C., & Dassau, E. (2014). Closed-Loop Artificial Pancreas Systems: Engineering the Algorithms. Diabetes Care, 37(5), 1191-1197. doi:10.2337/dc13-2108 es_ES
dc.description.references Haidar, A., Elleri, D., Kumareswaran, K., Leelarathna, L., Allen, J. M., Caldwell, K., … Hovorka, R. (2013). Pharmacokinetics of Insulin Aspart in Pump-Treated Subjects With Type 1 Diabetes: Reproducibility and Effect of Age, Weight, and Duration of Diabetes. Diabetes Care, 36(10), e173-e174. doi:10.2337/dc13-0485 es_ES
dc.description.references Herrero, P., Georgiou, P., Oliver, N., Johnston, D. G., & Toumazou, C. (2012). A Bio-Inspired Glucose Controller Based on Pancreatic β-Cell Physiology. Journal of Diabetes Science and Technology, 6(3), 606-616. doi:10.1177/193229681200600316 es_ES
dc.description.references Herrero, P., Georgiou, P., Oliver, N., Reddy, M., Johnston, D., & Toumazou, C. (2013). A Composite Model of Glucagon-Glucose Dynamics for In Silico Testing of Bihormonal Glucose Controllers. Journal of Diabetes Science and Technology, 7(4), 941-951. doi:10.1177/193229681300700416 es_ES
dc.description.references Hovorka, R., Canonico, V., Chassin, L. J., Haueter, U., Massi-Benedetti, M., Federici, M. O., … Wilinska, M. E. (2004). Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiological Measurement, 25(4), 905-920. doi:10.1088/0967-3334/25/4/010 es_ES
dc.description.references Jacobs, P. G., El Youssef, J., Castle, J., Bakhtiani, P., Branigan, D., Breen, M., … Ward, W. K. (2014). Automated Control of an Adaptive Bihormonal, Dual-Sensor Artificial Pancreas and Evaluation During Inpatient Studies. IEEE Transactions on Biomedical Engineering, 61(10), 2569-2581. doi:10.1109/tbme.2014.2323248 es_ES
dc.description.references Kovatchev, B. P., Breton, M., Dalla Man, C., & Cobelli, C. (2009). In SilicoPreclinical Trials: A Proof of Concept in Closed-Loop Control of Type 1 Diabetes. Journal of Diabetes Science and Technology, 3(1), 44-55. doi:10.1177/193229680900300106 es_ES
dc.description.references Kropff, J., & DeVries, J. H. (2016). Continuous Glucose Monitoring, Future Products, and Update on Worldwide Artificial Pancreas Projects. Diabetes Technology & Therapeutics, 18(S2), S2-53-S2-63. doi:10.1089/dia.2015.0345 es_ES
dc.description.references Maahs, D. M., Buckingham, B. A., Castle, J. R., Cinar, A., Damiano, E. R., Dassau, E., … Lum, J. W. (2016). Outcome Measures for Artificial Pancreas Clinical Trials: A Consensus Report: Table 1. Diabetes Care, 39(7), 1175-1179. doi:10.2337/dc15-2716 es_ES
dc.description.references Pedersen, M. G., Toffolo, G. M., & Cobelli, C. (2010). Cellular modeling: insight into oral minimal models of insulin secretion. American Journal of Physiology-Endocrinology and Metabolism, 298(3), E597-E601. doi:10.1152/ajpendo.00670.2009 es_ES
dc.description.references Reddy, M., Herrero, P., El Sharkawy, M., Pesl, P., Jugnee, N., Thomson, H., … Oliver, N. (2014). Feasibility Study of a Bio-inspired Artificial Pancreas in Adults with Type 1 Diabetes. Diabetes Technology & Therapeutics, 16(9), 550-557. doi:10.1089/dia.2014.0009 es_ES
dc.description.references Reddy, M., Herrero, P., Sharkawy, M. E., Pesl, P., Jugnee, N., Pavitt, D., … Oliver, N. S. (2015). Metabolic Control With the Bio-inspired Artificial Pancreas in Adults With Type 1 Diabetes. Journal of Diabetes Science and Technology, 10(2), 405-413. doi:10.1177/1932296815616134 es_ES
dc.description.references Riz, M., Pedersen, M. G., Toffolo, G. M., Haschke, G., Schneider, H.-C., Klabunde, T., … Cobelli, C. (2014). Minimal modeling of insulin secretion in the perfused rat pancreas: a drug effect case study. American Journal of Physiology-Endocrinology and Metabolism, 306(6), E627-E634. doi:10.1152/ajpendo.00603.2013 es_ES
dc.description.references Russell, S. J., El-Khatib, F. H., Sinha, M., Magyar, K. L., McKeon, K., Goergen, L. G., … Damiano, E. R. (2014). Outpatient Glycemic Control with a Bionic Pancreas in Type 1 Diabetes. New England Journal of Medicine, 371(4), 313-325. doi:10.1056/nejmoa1314474 es_ES
dc.description.references Schiavon, M., Man, C. D., Kudva, Y. C., Basu, A., & Cobelli, C. (2013). In SilicoOptimization of Basal Insulin Infusion Rate during Exercise: Implication for Artificial Pancreas. Journal of Diabetes Science and Technology, 7(6), 1461-1469. doi:10.1177/193229681300700606 es_ES
dc.description.references Taleb, N., Emami, A., Suppere, C., Messier, V., Legault, L., Ladouceur, M., … Rabasa-Lhoret, R. (2016). Efficacy of single-hormone and dual-hormone artificial pancreas during continuous and interval exercise in adult patients with type 1 diabetes: randomised controlled crossover trial. Diabetologia, 59(12), 2561-2571. doi:10.1007/s00125-016-4107-0 es_ES
dc.description.references Visentin, R., Dalla Man, C., Kudva, Y. C., Basu, A., & Cobelli, C. (2015). Circadian Variability of Insulin Sensitivity: Physiological Input for In Silico Artificial Pancreas. Diabetes Technology & Therapeutics, 17(1), 1-7. doi:10.1089/dia.2014.0192 es_ES
dc.description.references Wasserman, D. H. (2009). Four grams of glucose. American Journal of Physiology-Endocrinology and Metabolism, 296(1), E11-E21. doi:10.1152/ajpendo.90563.2008 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem