Mostrar el registro sencillo del ítem
dc.contributor.author | Herrero, P. | es_ES |
dc.contributor.author | Bondía Company, Jorge | es_ES |
dc.contributor.author | Oliver, N. | es_ES |
dc.contributor.author | Georgiou, P. | es_ES |
dc.date.accessioned | 2020-07-17T03:31:33Z | |
dc.date.available | 2020-07-17T03:31:33Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 1025-5842 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/148174 | |
dc.description.abstract | [EN] Type 1 diabetes is an autoimmune condition characterised by a pancreatic insulin secretion deficit, resulting in high blood glucose concentrations, which can lead to micro- and macrovascular complications. Type 1 diabetes also leads to impaired glucagon production by the pancreatic -cells, which acts as a counter-regulatory hormone to insulin. A closed-loop system for automatic insulin and glucagon delivery, also referred to as an artificial pancreas, has the potential to reduce the self-management burden of type 1 diabetes and reduce the risk of hypo- and hyperglycemia. To date, bihormonal closed-loop systems for glucagon and insulin delivery have been based on two independent controllers. However, in physiology, the secretion of insulin and glucagon in the body is closely interconnected by paracrine and endocrine associations. In this work, we present a novel biologically-inspired glucose control strategy that accounts for such coordination. An in silico study using an FDA-accepted type 1 simulator was performed to evaluate the proposed coordinated control strategy compared to its non-coordinated counterpart, as well as an insulin-only version of the controller. The proposed coordinated strategy achieves a reduction of hyperglycemia without increasing hypoglycemia, when compared to its non-coordinated counterpart. | es_ES |
dc.description.sponsorship | This work was supported by the Wellcome Trust; the Spanish Ministry of Economy and Competitiveness (MINECO) [grant number DPI2016-78831-C2-1-R]; the EU through FEDER funds. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Computer Methods in Biomechanics & Biomedical Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Artificial pancreas | es_ES |
dc.subject | Diabetes | es_ES |
dc.subject | Closed-loop control | es_ES |
dc.subject | Bihormonal control | es_ES |
dc.subject | Glucose control | es_ES |
dc.subject | Insulin delivery | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | A coordinated control strategy for insulin and glucagon delivery in type 1 diabetes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/10255842.2017.1378352 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2016-78831-C2-1-R/ES/SOLUCIONES PARA LA MEJORA DE LA EFICIENCIA Y SEGURIDAD DEL PANCREAS ARTIFICIAL MEDIANTE ARQUITECTURAS DE CONTROL MULTIVARIABLE TOLERANTES A FALLOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Herrero, P.; Bondía Company, J.; Oliver, N.; Georgiou, P. (2017). A coordinated control strategy for insulin and glucagon delivery in type 1 diabetes. Computer Methods in Biomechanics & Biomedical Engineering. 20(13):1474-1482. https://doi.org/10.1080/10255842.2017.1378352 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/10255842.2017.1378352 | es_ES |
dc.description.upvformatpinicio | 1474 | es_ES |
dc.description.upvformatpfin | 1482 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 13 | es_ES |
dc.identifier.pmid | 28929796 | es_ES |
dc.identifier.pmcid | PMC6522378 | es_ES |
dc.relation.pasarela | S\353467 | es_ES |
dc.contributor.funder | Wellcome Trust | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Brazeau, A. S., Mircescu, H., Desjardins, K., Leroux, C., Strychar, I., Ekoé, J. M., & Rabasa-Lhoret, R. (2013). Carbohydrate counting accuracy and blood glucose variability in adults with type 1 diabetes. Diabetes Research and Clinical Practice, 99(1), 19-23. doi:10.1016/j.diabres.2012.10.024 | es_ES |
dc.description.references | Dalla Man, C., Rizza, R. A., & Cobelli, C. (2007). Meal Simulation Model of the Glucose-Insulin System. IEEE Transactions on Biomedical Engineering, 54(10), 1740-1749. doi:10.1109/tbme.2007.893506 | es_ES |
dc.description.references | Epidemiology of severe hypoglycemia in the diabetes control and complications trial. (1991). The American Journal of Medicine, 90(4), 450-459. doi:10.1016/0002-9343(91)80085-z | es_ES |
dc.description.references | Doyle, F. J., Huyett, L. M., Lee, J. B., Zisser, H. C., & Dassau, E. (2014). Closed-Loop Artificial Pancreas Systems: Engineering the Algorithms. Diabetes Care, 37(5), 1191-1197. doi:10.2337/dc13-2108 | es_ES |
dc.description.references | Haidar, A., Elleri, D., Kumareswaran, K., Leelarathna, L., Allen, J. M., Caldwell, K., … Hovorka, R. (2013). Pharmacokinetics of Insulin Aspart in Pump-Treated Subjects With Type 1 Diabetes: Reproducibility and Effect of Age, Weight, and Duration of Diabetes. Diabetes Care, 36(10), e173-e174. doi:10.2337/dc13-0485 | es_ES |
dc.description.references | Herrero, P., Georgiou, P., Oliver, N., Johnston, D. G., & Toumazou, C. (2012). A Bio-Inspired Glucose Controller Based on Pancreatic β-Cell Physiology. Journal of Diabetes Science and Technology, 6(3), 606-616. doi:10.1177/193229681200600316 | es_ES |
dc.description.references | Herrero, P., Georgiou, P., Oliver, N., Reddy, M., Johnston, D., & Toumazou, C. (2013). A Composite Model of Glucagon-Glucose Dynamics for In Silico Testing of Bihormonal Glucose Controllers. Journal of Diabetes Science and Technology, 7(4), 941-951. doi:10.1177/193229681300700416 | es_ES |
dc.description.references | Hovorka, R., Canonico, V., Chassin, L. J., Haueter, U., Massi-Benedetti, M., Federici, M. O., … Wilinska, M. E. (2004). Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiological Measurement, 25(4), 905-920. doi:10.1088/0967-3334/25/4/010 | es_ES |
dc.description.references | Jacobs, P. G., El Youssef, J., Castle, J., Bakhtiani, P., Branigan, D., Breen, M., … Ward, W. K. (2014). Automated Control of an Adaptive Bihormonal, Dual-Sensor Artificial Pancreas and Evaluation During Inpatient Studies. IEEE Transactions on Biomedical Engineering, 61(10), 2569-2581. doi:10.1109/tbme.2014.2323248 | es_ES |
dc.description.references | Kovatchev, B. P., Breton, M., Dalla Man, C., & Cobelli, C. (2009). In SilicoPreclinical Trials: A Proof of Concept in Closed-Loop Control of Type 1 Diabetes. Journal of Diabetes Science and Technology, 3(1), 44-55. doi:10.1177/193229680900300106 | es_ES |
dc.description.references | Kropff, J., & DeVries, J. H. (2016). Continuous Glucose Monitoring, Future Products, and Update on Worldwide Artificial Pancreas Projects. Diabetes Technology & Therapeutics, 18(S2), S2-53-S2-63. doi:10.1089/dia.2015.0345 | es_ES |
dc.description.references | Maahs, D. M., Buckingham, B. A., Castle, J. R., Cinar, A., Damiano, E. R., Dassau, E., … Lum, J. W. (2016). Outcome Measures for Artificial Pancreas Clinical Trials: A Consensus Report: Table 1. Diabetes Care, 39(7), 1175-1179. doi:10.2337/dc15-2716 | es_ES |
dc.description.references | Pedersen, M. G., Toffolo, G. M., & Cobelli, C. (2010). Cellular modeling: insight into oral minimal models of insulin secretion. American Journal of Physiology-Endocrinology and Metabolism, 298(3), E597-E601. doi:10.1152/ajpendo.00670.2009 | es_ES |
dc.description.references | Reddy, M., Herrero, P., El Sharkawy, M., Pesl, P., Jugnee, N., Thomson, H., … Oliver, N. (2014). Feasibility Study of a Bio-inspired Artificial Pancreas in Adults with Type 1 Diabetes. Diabetes Technology & Therapeutics, 16(9), 550-557. doi:10.1089/dia.2014.0009 | es_ES |
dc.description.references | Reddy, M., Herrero, P., Sharkawy, M. E., Pesl, P., Jugnee, N., Pavitt, D., … Oliver, N. S. (2015). Metabolic Control With the Bio-inspired Artificial Pancreas in Adults With Type 1 Diabetes. Journal of Diabetes Science and Technology, 10(2), 405-413. doi:10.1177/1932296815616134 | es_ES |
dc.description.references | Riz, M., Pedersen, M. G., Toffolo, G. M., Haschke, G., Schneider, H.-C., Klabunde, T., … Cobelli, C. (2014). Minimal modeling of insulin secretion in the perfused rat pancreas: a drug effect case study. American Journal of Physiology-Endocrinology and Metabolism, 306(6), E627-E634. doi:10.1152/ajpendo.00603.2013 | es_ES |
dc.description.references | Russell, S. J., El-Khatib, F. H., Sinha, M., Magyar, K. L., McKeon, K., Goergen, L. G., … Damiano, E. R. (2014). Outpatient Glycemic Control with a Bionic Pancreas in Type 1 Diabetes. New England Journal of Medicine, 371(4), 313-325. doi:10.1056/nejmoa1314474 | es_ES |
dc.description.references | Schiavon, M., Man, C. D., Kudva, Y. C., Basu, A., & Cobelli, C. (2013). In SilicoOptimization of Basal Insulin Infusion Rate during Exercise: Implication for Artificial Pancreas. Journal of Diabetes Science and Technology, 7(6), 1461-1469. doi:10.1177/193229681300700606 | es_ES |
dc.description.references | Taleb, N., Emami, A., Suppere, C., Messier, V., Legault, L., Ladouceur, M., … Rabasa-Lhoret, R. (2016). Efficacy of single-hormone and dual-hormone artificial pancreas during continuous and interval exercise in adult patients with type 1 diabetes: randomised controlled crossover trial. Diabetologia, 59(12), 2561-2571. doi:10.1007/s00125-016-4107-0 | es_ES |
dc.description.references | Visentin, R., Dalla Man, C., Kudva, Y. C., Basu, A., & Cobelli, C. (2015). Circadian Variability of Insulin Sensitivity: Physiological Input for In Silico Artificial Pancreas. Diabetes Technology & Therapeutics, 17(1), 1-7. doi:10.1089/dia.2014.0192 | es_ES |
dc.description.references | Wasserman, D. H. (2009). Four grams of glucose. American Journal of Physiology-Endocrinology and Metabolism, 296(1), E11-E21. doi:10.1152/ajpendo.90563.2008 | es_ES |