Mostrar el registro sencillo del ítem
dc.contributor.author | Ramiro Sánchez, Carla | es_ES |
dc.contributor.author | Simarro, M. Angeles | es_ES |
dc.contributor.author | Gonzalez, Alberto | es_ES |
dc.contributor.author | Vidal Maciá, Antonio Manuel | es_ES |
dc.date.accessioned | 2020-07-17T03:32:12Z | |
dc.date.available | 2020-07-17T03:32:12Z | |
dc.date.issued | 2019-03 | es_ES |
dc.identifier.issn | 0920-8542 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/148186 | |
dc.description.abstract | [EN] The number of transmit and receiver antennas is an important factor that affects the performance and complexity of a MIMO system. A MIMO system with very large number of antennas is a promising candidate technology for next generations of wireless systems. However, the vast majority of the methods proposed for conventional MIMO system are not suitable for large dimensions. In this context, the use of high-performance computing systems, such us multicore CPUs and graphics processing units has become attractive for efficient implementation of parallel signal processing algorithms with high computational requirements. In the present work, two practical parallel approaches of the Subspace Marginalization with Interference Suppression detector for large MIMO systems have been proposed. Both approaches have been evaluated and compared in terms of performance and complexity with other detectors for different system parameters. | es_ES |
dc.description.sponsorship | This work has been partially supported by the Spanish MINECO Grant RACHEL TEC2013-47141-C4-4-R, the PROMETEO FASE II 2014/003 Project and FPU AP-2012/71274 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | The Journal of Supercomputing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Large MIMO systems | es_ES |
dc.subject | SUMIS | es_ES |
dc.subject | High-order constellation | es_ES |
dc.subject | GPU | es_ES |
dc.subject | Low-complexity detectio | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.title | Parallel SUMIS Soft Detector for Large MIMO Systems on Multicore and GPU | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11227-018-2403-9 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2013-47141-C4-4-R/ES/TECNICAS DE ACCESO RADIO PARA REDES INALAMBRICAS HETEROGENEAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//AP2012-1274/ES/AP2012-1274/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F003/ES/Computación y comunicaciones de altas prestaciones y aplicaciones en ingeniería/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.description.bibliographicCitation | Ramiro Sánchez, C.; Simarro, MA.; Gonzalez, A.; Vidal Maciá, AM. (2019). Parallel SUMIS Soft Detector for Large MIMO Systems on Multicore and GPU. The Journal of Supercomputing. 75(3):1256-1267. https://doi.org/10.1007/s11227-018-2403-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11227-018-2403-9 | es_ES |
dc.description.upvformatpinicio | 1256 | es_ES |
dc.description.upvformatpfin | 1267 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 75 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\375315 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.description.references | Rusek F, Persson D, Lau BK, Larsson EG, Marzetta TL, Edfors O, Tufvesson F (2013) Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Proc Mag 30(1):40–60 | es_ES |
dc.description.references | Studer C, Burg A, Bölcskei H (2008) Soft-output sphere decoding: algorithms and VLSI implementation. IEEE J Sel Areas Commun 26(2):290–300 | es_ES |
dc.description.references | Wang R, Giannakis GB (2004) Approaching MIMO channel capacity with reduced-complexity soft sphere decoding. In: Wireless Communications and Networking Conference, 2004. WCNC. 2004 IEEE vol 3, pp 1620–1625 | es_ES |
dc.description.references | Persson D, Larsson EG (2011) Partial marginalization soft MIMO detection with higher order constellations. IEEE Trans Signal Procces 59(1):453–458 | es_ES |
dc.description.references | Cîrkić M, Larsson EG (2014) SUMIS: near-optimal soft-in soft-out MIMO detection with low and fixed complexity. IEEE Trans Signal Process 62(12):3084–3097 | es_ES |
dc.description.references | Alberto Gonzalez C, Ramiro, M, Ángeles Simarro, Antonio M Vidal (2017) Parallel SUMIS soft detector for MIMO systems on multicore. In: Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering, pp 1729–1736 | es_ES |
dc.description.references | Hochwald BM, ten Brink S (2003) Achieving near-capacity on a multiple-antenna channel. IEEE Trans Commun 51:389–399 | es_ES |
dc.description.references | Kaipeng L, Bei Y, Michael W, Joseph RC, Christoph S (2015) Accelerating massive MIMO uplink detection on GPU for SDR systems. In: 2015 IEEE dallas circuits and systems conference (DCAS), pp 1–4 | es_ES |
dc.description.references | Di W, Eilert J, Liu D (2011) Implementation of a high-speed MIMO soft-output symbol detector for software defined radio. J Signal Process Syst 63(1):27–37 | es_ES |
dc.description.references | Anderson E, Bai Z, Bischof C, Blackford LS, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Sorensen D (1999) LAPACK users’ guide. SIAM, London | es_ES |
dc.description.references | Intel MKL Reference Manual (2015) https://software.intel.com/en-us/articles/mkl-reference-manual | es_ES |
dc.description.references | cuBLAS Documentation (2015) http://docs.nvidia.com/cuda/cublas | es_ES |
dc.description.references | Dagum L, Enon R (1998) OpenMP: an industry standard API for shared-memory programming. IEEE Comput Sci Eng 5(1):46–55 | es_ES |
dc.description.references | CUDA Toolkit Documentation, Version 7.5 (2015) https://developer.nvidia.com/cuda-toolkit | es_ES |
dc.description.references | Roger S, Ramiro C, Gonzalez A, Almenar V, Vidal AM (2012) Fully parallel GPU implementation of a fixed-complexity soft-output MIMO detector. IEEE Trans Veh Technol 61(8):3796–3800 | es_ES |
dc.description.references | Senst M, Ascheid G, Lüders H (2010) Performance evaluation of the markov chain monte carlo MIMO detector based on mutual information. 2010 IEEE International Conference on Communications (ICC), pp 1–6 | es_ES |