Mostrar el registro sencillo del ítem
dc.contributor.author | González Suárez, Ana | es_ES |
dc.contributor.author | Hornero, Fernando | es_ES |
dc.contributor.author | Berjano, Enrique | es_ES |
dc.date.accessioned | 2020-07-17T03:32:32Z | |
dc.date.available | 2020-07-17T03:32:32Z | |
dc.date.issued | 2010-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/148195 | |
dc.description.abstract | [EN] The efficacy of treating atrial fibrillation by RF ablation on the epicardial surface is currently under question due to the presence of epicardial adipose tissue interposed between the ablation electrode and target site (atrial wall). The problem is probably caused by the electrical conductivity of the fat (0.02 S/m) being lower than that of the atrial tissue (0.4-0.6 S/m). Since our objective is to improve epicardial RF ablation techniques, we planned a study based on a two-dimensional mathematical model including an active electrode, a fragment of epicardial fat over a fragment of atrial tissue, and a section of atrium with circulating blood. Different procedures for applying RF power were studied, such as varying the frequency, using a cooled instead of a dry electrode, and different modes of controlling RF power (constant current, temperature and voltage) for different values of epicardial fat thickness. In general, the results showed that the epicardial fat layer seriously impedes the passage of RF current, thus reducing the effectiveness of atrial wall RF ablation. | es_ES |
dc.description.sponsorship | This work was supported by a research grant from the Spanish Government in the Plan Nacional de I+D+I del Ministerio de Ciencia e Innovación" (TEC2008-01369/TEC). We would like to thank the R+D+i Linguistic Assistance Office at the Universidad Politécnica of Valencia for their help in revising this paper. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Bentham Science | es_ES |
dc.relation.ispartof | The Open Biomedical Engineering Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Mathematical modeling of epicardial RF ablation of atrial tissue with overlying epicardial fat | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.2174/1874120701004020047 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2008-01369/ES/MODELOS COMPUTACIONALES E INVESTIGACION EXPERIMENTAL EN EL ESTUDIO DE TECNICAS QUIRURGICAS DE CALENTAMIENTO DE TEJIDOS BIOLOGICOS MEDIANTE CORRIENTES DE RADIOFRECUENCIA./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | González Suárez, A.; Hornero, F.; Berjano, E. (2010). Mathematical modeling of epicardial RF ablation of atrial tissue with overlying epicardial fat. The Open Biomedical Engineering Journal. 4(4):47-55. https://doi.org/10.2174/1874120701004020047 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.2174/1874120701004020047 | es_ES |
dc.description.upvformatpinicio | 47 | es_ES |
dc.description.upvformatpfin | 55 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 4 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 1874-1207 | es_ES |
dc.identifier.pmid | 20300229 | es_ES |
dc.identifier.pmcid | PMC2841367 | es_ES |
dc.relation.pasarela | S\39634 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Kannel W B, Wolf P A, Benjamin E J, and Levy D. “Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates” Am J Cardiol 1998 Oct; vol. 82 : pp. 2N-9N. | es_ES |
dc.description.references | Benjamin E J, Levy D, Vaziri S M, D'Agostino R B, Belanger A J, and Wolf P A. “Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study” JAMA 1994 Mar; vol. 271 (no. 11) : pp. 840-844. | es_ES |
dc.description.references | Wolf PA, Abbott RD, and Kannel WB. “Atrial fibrillation as an independent risk factor for stroke: the Framingham Study” Stroke 1991 Aug; vol. 22 : pp. 983-988. | es_ES |
dc.description.references | Khargi K, Hutten B A, Lemke B, and Deneke T. “Surgical treatment of atrial fibrillation; a systematic review” Eur J Cardiothorac Surg 2005 Feb; vol. 27 : pp. 258-265. | es_ES |
dc.description.references | Cox J L, Schuessler R B, Lappas D G, and Boineau J P. “An 8 1/2-year clinical experience with surgery for atrial fibrillation” Ann Surg 1996 Sep; vol. 224 : pp. 267-273. | es_ES |
dc.description.references | Nakajima H, Kobayashi J, Bando K, et al. “The effect of cryo-maze procedure on early and intermediate term outcome in mitral valve disease: case matched study” Circulation 2002 Sep; vol. 106 : pp. I46-I50. | es_ES |
dc.description.references | Miyagi Y, Ishii Y, Nitta T, Ochi M, and Shimizu K. “Electrophysiological and histological assessment of transmurality after epicardial ablation using unipolar radiofrequency energy” J Card Surg 2009 Jan-Feb; vol. 24 (no. 1) : pp. 34-40. | es_ES |
dc.description.references | Berjano E J, and Hornero F. “Thermal-electrical modeling for epicardial atrial radiofrequency ablation” IEEE Trans Biomed Eng 2004 Aug; vol. 51 (no. 8) : pp. 1348-. | es_ES |
dc.description.references | Santiago T, Melo J Q, Gouveia R H, and Martins A P. “Intra-atrial temperatures in radiofrequency endocardial ablation: histologic evaluation of lesions” Ann Thorac Surg 2003 May; vol. 75 : pp. 1495-. | es_ES |
dc.description.references | Santiago T, Melo J, Gouveia R H, Abecasis L M, Adragão P, and Martins A P. “Epicardial radiofrequency applications: in vitro and in vivo studies on human atrial myocardium” Eur J Cardiothorac Surg 2003 Oct; vol. 24 : pp. 481-486. | es_ES |
dc.description.references | Deneke T, Khargi K, Müller K M, et al. “Histopathology of intraoperatively induced linear radiofrequency ablation lesions in patients with chronic atrial fibrillation” Eur Heart J 2005 Sep; vol. 26 : pp. 1797-. | es_ES |
dc.description.references | Hong K N, Russo M J, Liberman E A, et al. “Effect of epicardial fat on ablation performance: a three-energy source comparison” J Card Surg 2007 Nov.-Dec; vol. 22 (no. 6) : pp. 521-524. | es_ES |
dc.description.references | Thomas S P, Guy D J, Boyd A C, Eipper V E, Ross D L, and Chard R B. “Comparison of epicardial and endocardial linear ablation using handheld probes” Ann Thorac Surg 2003 Feb; vol. 75 : pp. 543-548. | es_ES |
dc.description.references | Mitnovetski S, Almeida A, A Goldstein J, Pick A W, and Smith J A. “Epicardial high-intensity focused ultrasound cardiac ablation for surgical treatment of atrial fibrillation” Heart Lung Circ 2009 Feb; vol. 18 (no. 1) : pp. 28-31. | es_ES |
dc.description.references | Pruitt J C, Lazzara R R, and Ebra G. “Minimally invasive surgical ablation of atrial fibrillation: The thoracoscopic box lesion approach” J Interv Card Electrophysiol 2007 Dec; vol. 20 (no. 3) : pp. 83-87. | es_ES |
dc.description.references | Ba M, Fornés P, Nutu O, Latrémouille C, Carpentier A, and Chachques J C. “Treatment of atrial fibrillation by surgical epicardial ablation: bipolar radiofrequency versus cryoablation” Arch Cardiovasc Dis 2008 Nov.-Dec; vol. 101 (no. 11-12) : pp. 763-768. | es_ES |
dc.description.references | Berjano E J. “Theoretical modeling for radiofrequency ablation: state-of-the-art and challenges for the future” Biomed Eng Online 2006 Apr; vol. 5 : p. 24. | es_ES |
dc.description.references | Koovor P, Eipper V E, Dewsnap B I, et al. “The effect of different frequencies on lesion size during radiofrequency ablation” Circulation 1996; vol. 94 : p. I-677. | es_ES |
dc.description.references | d'Avila A, Houghtaling C, Gutierrez P, et al. “Catheter ablation of ventricular epicardial tissue: a comparison of standard and cooled-tip radiofrequency energy” Circulation 2004 May; vol. 109 (no. 19) : pp. 2363-. | es_ES |
dc.description.references | Raman J S, Ishikawa S, and Power J M. “Epicardial radiofrequency ablation of both atria in the treatment of atrial fibrillation: Experience in patients” Ann Thorac Surg 2002 Nov; vol. 74 (no. 5) : pp. 1506-. | es_ES |
dc.description.references | Haines D E, and Watson D D. “Tissue heating during radiofrequency catheter ablation: a thermodynamic model and observations in isolated perfused and superfused canine right ventricular free wall” Pacing Clin Electrophysiol 1989 Jun; vol. 12, (no. 6) : pp. 962-976. | es_ES |
dc.description.references | Pearce JA. Electrosurgery. Cambridge: Chapman and Hall 1986; pp. 224-34. | es_ES |
dc.description.references | Doss J D. “Calculation of electric fields in conductive media” Med Phys 1982 Jul.-Aug; vol. 9 : pp. 566-573. | es_ES |
dc.description.references | Haemmerich D, and Wood B J. “Hepatic radiofrequency ablation at low frequencies preferentially heats tumour tissue” Int J Hyperthermia 2006 Nov; vol. 22 (no. 7) : pp. 563-574. | es_ES |
dc.description.references | Gabriel S, Lau R W, and Gabriel C. “The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues” Phys Med Biol 1996 Nov; vol. 41 (no. 11) : pp. 2271-. | es_ES |
dc.description.references | Schutt D, Berjano E J, and Haemmerich D. “Effect of electrode thermal conductivity in cardiac radiofrequency catheter ablation: A computational modeling study” Int J Hyperthermia 2009 March; vol. 25 (no. 2) : pp. 99-107. | es_ES |
dc.description.references | Jain M K, and Wolf P D. “Temperature-controlled and constant-power radio-freqiency ablation: what affects lesion growth?” IEEE Trans Biomed Eng 1999 Dec; vol. 46 (no. 12) : pp. 1405-. | es_ES |
dc.description.references | Jain M K, Wolf P D, and Henriquez C. “Chilled-tip electrode radio frequency ablation of the endocardium: a finite element study” In: in Proceedings of the 17th Annual Conference of the IEEE Engineering in Medicine and Biology Society (IEEE-EMBS); 1995; pp. 273-4. | es_ES |
dc.description.references | Panescu D, Fleischman S D, Whayne J G, and Swanson D K. “Temperature distribution under cooled electrodes during radiofrequency catheter ablation” In: In Proceedings of the 17th Annual Conference of the IEEE Engineering in Medicine and Biology Society (IEEE-EMBS); 1995; pp. 299-300. | es_ES |
dc.description.references | Rivera M J, López Molina J A, Trujillo M, Berjano E J. “Theoretical modeling of RF ablation with internally cooled electrodes: comparative study of different thermal boundary conditions at the electrode-tissue interface” Math Biosci Eng 2009; vol. 6 (no. 3) : pp. 611-27. | es_ES |
dc.description.references | Panescu D, Whayne J G, Fleishman S D, Mirotznik M S, Swanson D K, and Webster J G. “Three-dimensional finite element analysis of current density and temperature distributions during radio-frequency ablation” IEEE Trans Biomed Eng 1995 Sep; vol. 42 (no. 9) : pp. 879-890. | es_ES |