- -

Mathematical modeling of epicardial RF ablation of atrial tissue with overlying epicardial fat

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mathematical modeling of epicardial RF ablation of atrial tissue with overlying epicardial fat

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González Suárez, Ana es_ES
dc.contributor.author Hornero, Fernando es_ES
dc.contributor.author Berjano, Enrique es_ES
dc.date.accessioned 2020-07-17T03:32:32Z
dc.date.available 2020-07-17T03:32:32Z
dc.date.issued 2010-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148195
dc.description.abstract [EN] The efficacy of treating atrial fibrillation by RF ablation on the epicardial surface is currently under question due to the presence of epicardial adipose tissue interposed between the ablation electrode and target site (atrial wall). The problem is probably caused by the electrical conductivity of the fat (0.02 S/m) being lower than that of the atrial tissue (0.4-0.6 S/m). Since our objective is to improve epicardial RF ablation techniques, we planned a study based on a two-dimensional mathematical model including an active electrode, a fragment of epicardial fat over a fragment of atrial tissue, and a section of atrium with circulating blood. Different procedures for applying RF power were studied, such as varying the frequency, using a cooled instead of a dry electrode, and different modes of controlling RF power (constant current, temperature and voltage) for different values of epicardial fat thickness. In general, the results showed that the epicardial fat layer seriously impedes the passage of RF current, thus reducing the effectiveness of atrial wall RF ablation. es_ES
dc.description.sponsorship This work was supported by a research grant from the Spanish Government in the Plan Nacional de I+D+I del Ministerio de Ciencia e Innovación" (TEC2008-01369/TEC). We would like to thank the R+D+i Linguistic Assistance Office at the Universidad Politécnica of Valencia for their help in revising this paper. es_ES
dc.language Inglés es_ES
dc.publisher Bentham Science es_ES
dc.relation.ispartof The Open Biomedical Engineering Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Mathematical modeling of epicardial RF ablation of atrial tissue with overlying epicardial fat es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.2174/1874120701004020047 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2008-01369/ES/MODELOS COMPUTACIONALES E INVESTIGACION EXPERIMENTAL EN EL ESTUDIO DE TECNICAS QUIRURGICAS DE CALENTAMIENTO DE TEJIDOS BIOLOGICOS MEDIANTE CORRIENTES DE RADIOFRECUENCIA./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation González Suárez, A.; Hornero, F.; Berjano, E. (2010). Mathematical modeling of epicardial RF ablation of atrial tissue with overlying epicardial fat. The Open Biomedical Engineering Journal. 4(4):47-55. https://doi.org/10.2174/1874120701004020047 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.2174/1874120701004020047 es_ES
dc.description.upvformatpinicio 47 es_ES
dc.description.upvformatpfin 55 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1874-1207 es_ES
dc.identifier.pmid 20300229 es_ES
dc.identifier.pmcid PMC2841367 es_ES
dc.relation.pasarela S\39634 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Kannel W B, Wolf P A, Benjamin E J, and Levy D. “Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates” Am J Cardiol 1998 Oct; vol. 82 : pp. 2N-9N. es_ES
dc.description.references Benjamin E J, Levy D, Vaziri S M, D'Agostino R B, Belanger A J, and Wolf P A. “Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study” JAMA 1994 Mar; vol. 271 (no. 11) : pp. 840-844. es_ES
dc.description.references Wolf PA, Abbott RD, and Kannel WB. “Atrial fibrillation as an independent risk factor for stroke: the Framingham Study” Stroke 1991 Aug; vol. 22 : pp. 983-988. es_ES
dc.description.references Khargi K, Hutten B A, Lemke B, and Deneke T. “Surgical treatment of atrial fibrillation; a systematic review” Eur J Cardiothorac Surg 2005 Feb; vol. 27 : pp. 258-265. es_ES
dc.description.references Cox J L, Schuessler R B, Lappas D G, and Boineau J P. “An 8 1/2-year clinical experience with surgery for atrial fibrillation” Ann Surg 1996 Sep; vol. 224 : pp. 267-273. es_ES
dc.description.references Nakajima H, Kobayashi J, Bando K, et al. “The effect of cryo-maze procedure on early and intermediate term outcome in mitral valve disease: case matched study” Circulation 2002 Sep; vol. 106 : pp. I46-I50. es_ES
dc.description.references Miyagi Y, Ishii Y, Nitta T, Ochi M, and Shimizu K. “Electrophysiological and histological assessment of transmurality after epicardial ablation using unipolar radiofrequency energy” J Card Surg 2009 Jan-Feb; vol. 24 (no. 1) : pp. 34-40. es_ES
dc.description.references Berjano E J, and Hornero F. “Thermal-electrical modeling for epicardial atrial radiofrequency ablation” IEEE Trans Biomed Eng 2004 Aug; vol. 51 (no. 8) : pp. 1348-. es_ES
dc.description.references Santiago T, Melo J Q, Gouveia R H, and Martins A P. “Intra-atrial temperatures in radiofrequency endocardial ablation: histologic evaluation of lesions” Ann Thorac Surg 2003 May; vol. 75 : pp. 1495-. es_ES
dc.description.references Santiago T, Melo J, Gouveia R H, Abecasis L M, Adragão P, and Martins A P. “Epicardial radiofrequency applications: in vitro and in vivo studies on human atrial myocardium” Eur J Cardiothorac Surg 2003 Oct; vol. 24 : pp. 481-486. es_ES
dc.description.references Deneke T, Khargi K, Müller K M, et al. “Histopathology of intraoperatively induced linear radiofrequency ablation lesions in patients with chronic atrial fibrillation” Eur Heart J 2005 Sep; vol. 26 : pp. 1797-. es_ES
dc.description.references Hong K N, Russo M J, Liberman E A, et al. “Effect of epicardial fat on ablation performance: a three-energy source comparison” J Card Surg 2007 Nov.-Dec; vol. 22 (no. 6) : pp. 521-524. es_ES
dc.description.references Thomas S P, Guy D J, Boyd A C, Eipper V E, Ross D L, and Chard R B. “Comparison of epicardial and endocardial linear ablation using handheld probes” Ann Thorac Surg 2003 Feb; vol. 75 : pp. 543-548. es_ES
dc.description.references Mitnovetski S, Almeida A, A Goldstein J, Pick A W, and Smith J A. “Epicardial high-intensity focused ultrasound cardiac ablation for surgical treatment of atrial fibrillation” Heart Lung Circ 2009 Feb; vol. 18 (no. 1) : pp. 28-31. es_ES
dc.description.references Pruitt J C, Lazzara R R, and Ebra G. “Minimally invasive surgical ablation of atrial fibrillation: The thoracoscopic box lesion approach” J Interv Card Electrophysiol 2007 Dec; vol. 20 (no. 3) : pp. 83-87. es_ES
dc.description.references Ba M, Fornés P, Nutu O, Latrémouille C, Carpentier A, and Chachques J C. “Treatment of atrial fibrillation by surgical epicardial ablation: bipolar radiofrequency versus cryoablation” Arch Cardiovasc Dis 2008 Nov.-Dec; vol. 101 (no. 11-12) : pp. 763-768. es_ES
dc.description.references Berjano E J. “Theoretical modeling for radiofrequency ablation: state-of-the-art and challenges for the future” Biomed Eng Online 2006 Apr; vol. 5 : p. 24. es_ES
dc.description.references Koovor P, Eipper V E, Dewsnap B I, et al. “The effect of different frequencies on lesion size during radiofrequency ablation” Circulation 1996; vol. 94 : p. I-677. es_ES
dc.description.references d'Avila A, Houghtaling C, Gutierrez P, et al. “Catheter ablation of ventricular epicardial tissue: a comparison of standard and cooled-tip radiofrequency energy” Circulation 2004 May; vol. 109 (no. 19) : pp. 2363-. es_ES
dc.description.references Raman J S, Ishikawa S, and Power J M. “Epicardial radiofrequency ablation of both atria in the treatment of atrial fibrillation: Experience in patients” Ann Thorac Surg 2002 Nov; vol. 74 (no. 5) : pp. 1506-. es_ES
dc.description.references Haines D E, and Watson D D. “Tissue heating during radiofrequency catheter ablation: a thermodynamic model and observations in isolated perfused and superfused canine right ventricular free wall” Pacing Clin Electrophysiol 1989 Jun; vol. 12, (no. 6) : pp. 962-976. es_ES
dc.description.references Pearce JA. Electrosurgery. Cambridge: Chapman and Hall 1986; pp. 224-34. es_ES
dc.description.references Doss J D. “Calculation of electric fields in conductive media” Med Phys 1982 Jul.-Aug; vol. 9 : pp. 566-573. es_ES
dc.description.references Haemmerich D, and Wood B J. “Hepatic radiofrequency ablation at low frequencies preferentially heats tumour tissue” Int J Hyperthermia 2006 Nov; vol. 22 (no. 7) : pp. 563-574. es_ES
dc.description.references Gabriel S, Lau R W, and Gabriel C. “The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues” Phys Med Biol 1996 Nov; vol. 41 (no. 11) : pp. 2271-. es_ES
dc.description.references Schutt D, Berjano E J, and Haemmerich D. “Effect of electrode thermal conductivity in cardiac radiofrequency catheter ablation: A computational modeling study” Int J Hyperthermia 2009 March; vol. 25 (no. 2) : pp. 99-107. es_ES
dc.description.references Jain M K, and Wolf P D. “Temperature-controlled and constant-power radio-freqiency ablation: what affects lesion growth?” IEEE Trans Biomed Eng 1999 Dec; vol. 46 (no. 12) : pp. 1405-. es_ES
dc.description.references Jain M K, Wolf P D, and Henriquez C. “Chilled-tip electrode radio frequency ablation of the endocardium: a finite element study” In: in Proceedings of the 17th Annual Conference of the IEEE Engineering in Medicine and Biology Society (IEEE-EMBS); 1995; pp. 273-4. es_ES
dc.description.references Panescu D, Fleischman S D, Whayne J G, and Swanson D K. “Temperature distribution under cooled electrodes during radiofrequency catheter ablation” In: In Proceedings of the 17th Annual Conference of the IEEE Engineering in Medicine and Biology Society (IEEE-EMBS); 1995; pp. 299-300. es_ES
dc.description.references Rivera M J, López Molina J A, Trujillo M, Berjano E J. “Theoretical modeling of RF ablation with internally cooled electrodes: comparative study of different thermal boundary conditions at the electrode-tissue interface” Math Biosci Eng 2009; vol. 6 (no. 3) : pp. 611-27. es_ES
dc.description.references Panescu D, Whayne J G, Fleishman S D, Mirotznik M S, Swanson D K, and Webster J G. “Three-dimensional finite element analysis of current density and temperature distributions during radio-frequency ablation” IEEE Trans Biomed Eng 1995 Sep; vol. 42 (no. 9) : pp. 879-890. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem