- -

Review of computer-based methods for archaeological ceramic sherds reconstruction

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Review of computer-based methods for archaeological ceramic sherds reconstruction

Show full item record

Eslami, D.; Di Angelo, L.; Di Stefano, P.; Pane, C. (2020). Review of computer-based methods for archaeological ceramic sherds reconstruction. Virtual Archaeology Review. 11(23):34-49. https://doi.org/10.4995/var.2020.13134

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148199

Files in this item

Item Metadata

Title: Review of computer-based methods for archaeological ceramic sherds reconstruction
Secondary Title: Revisión de los métodos computerizados para la reconstrucción de fragmentos arqueológicos de cerámica
Author: Eslami, Dariush Di Angelo, Luca Di Stefano, Paolo Pane, Caterina
Issued date:
Abstract:
[ES] Las cerámicas son los hallazgos más numerosos encontrados en las excavaciones arqueológicas; a menudo se usan para obtener información sobre la historia, la economía y el arte de un sitio. Los arqueólogos rara vez ...[+]


[EN] Potteries are the most numerous finds found in archaeological excavations; they are often used to get information about the history, economy, and art of a site. Archaeologists rarely find complete vases but, generally, ...[+]
Subjects: Computer methods in archaeology , 3D archaeology , 3D reconstruction , Automatic feature recognition and reconstruction , Restoration of pottery shape relics , Métodos informáticos en arqueología , Arqueología 3D , Reconstrucción en 3D , Reconocimiento automático de características y reconstrucción , Restauración de reliquias en forma de cerámica
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Virtual Archaeology Review. (eissn: 1989-9947 )
DOI: 10.4995/var.2020.13134
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/var.2020.13134
Type: Artículo

References

Andrews, S., & Laidlaw, D. H. (2002). Toward a framework for assembling broken pottery vessels. In Proceedings of the National Conference on Artificial Intelligence, (August 2003), (pp. 945-946).

Banterle, F., Itkin, B., Dellepiane, M., Wolf, L., Callieri, M., Dershowitz, N., & Scopigno, R. (2017). VASESKETCH: Automatic 3D Representation of Pottery from Paper Catalog Drawings. In Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, 1(693548), (pp. 683-690). https://doi.org/10.1109/ICDAR.2017.117

Belenguer, C. S., & Vidal, E. V. (2012). Archaeological fragment characterization and 3D reconstruction based on projective GPU depth maps. In Proceedings of the 2012 18th International Conference on Virtual Systems & Multimedia, VSMM 2012: Virtual Systems in the Information Society, (pp. 275-282). https://doi.org/10.1109/VSMM.2012.6365935 [+]
Andrews, S., & Laidlaw, D. H. (2002). Toward a framework for assembling broken pottery vessels. In Proceedings of the National Conference on Artificial Intelligence, (August 2003), (pp. 945-946).

Banterle, F., Itkin, B., Dellepiane, M., Wolf, L., Callieri, M., Dershowitz, N., & Scopigno, R. (2017). VASESKETCH: Automatic 3D Representation of Pottery from Paper Catalog Drawings. In Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, 1(693548), (pp. 683-690). https://doi.org/10.1109/ICDAR.2017.117

Belenguer, C. S., & Vidal, E. V. (2012). Archaeological fragment characterization and 3D reconstruction based on projective GPU depth maps. In Proceedings of the 2012 18th International Conference on Virtual Systems & Multimedia, VSMM 2012: Virtual Systems in the Information Society, (pp. 275-282). https://doi.org/10.1109/VSMM.2012.6365935

Blender. (2018). An open-source 3D graphics and animation software. Retrieved from https://www.blender.org

Brown, B. J., Toler-Franklin, C., Nehab, D., Burns, M., Dobkin, D., Vlachopoulos, A., Weyrich, T. (2008). A system for high-volume acquisition and matching of fresco fragments: Reassembling Theran wall paintings. ACM Transactions on Graphics, 27(3). https://doi.org/10.1145/1360612.1360683

Cao, Y., & Mumford, D. (2002). Geometric Structure Estimation of Axially Symmetric Pots from Small Fragments. In Proceedings of the signal processing, pattern recognition and applications, IASTED, Crete, Greece, June 25-28, 2002, (pp. 92-97).

Cohen, F., Zhang, Z., & Jeppson, P. (2010). Virtual reconstruction of archaeological vessels using convex hulls of surface markings. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, (pp. 55-61). http://dx.doi.org/10.1109/CVPRW.2010.5543528

Cohen, F., Zhang, Z., & Liu, Z. (2016). Mending broken vessels a fusion between color markings and anchor points on surface breaks. Multimedia Tools and Applications, 75(7), 3709-3732. https://doi.org/10.1007/s11042-014-2190-0

Cooper, D. B., Willis, A., Andrews, S., Baker, J., Cao, Y., Han, D., … others. (2001). Assembling virtual pots from 3D measurements of their fragments. In Proceedings of the 2001 Conference on Virtual Reality, Archeology, and Cultural Heritage, (pp. 241-254). https://doi.org/10.1145/584993.585032

Di Angelo, L., Di Stefano, P., Morabito, A. E., & Pane, C. (2018). Measurement of constant radius geometric features in archaeological pottery. Measurement: Journal of the International Measurement Confederation, 124 (March), 138-146. https://doi.org/10.1016/j.measurement.2018.04.016

Di Angelo, L., Di Stefano, P., & Pane, C. (2018). An automatic method for pottery fragments analysis. Measurement: Journal of the International Measurement Confederation, 128, 138-148. https://doi.org/10.1016/j.measurement.2018.06.008

Di Angelo, Luca, Di Stefano, P., & Pane, C. (2017). Automatic dimensional characterization of pottery. Journal of Cultural Heritage, 26, 118-128. https://doi.org/10.1016/j.culher.2017.02.003

Fragkos, S., Tzimtzimis, E., Tzetzis, D., Dodun, O., & Kyratsis, P. (2018). 3D laser scanning and digital restoration of an archaeological find. MATEC Web of Conferences, 178. https://doi.org/10.1051/matecconf/201817803013

Funkhouser, T., Shin, H., Toler-Franklin, C., Castañeda, A. G., Brown, B., Dobkin, D., Weyrich, T. (2011). Learning how to match fresco fragments. Journal on Computing and Cultural Heritage, 4(2). https://doi.org/10.1145/2037820.2037824

Halir, R., & Menard, C. (1996). Diameter estimation for archaeological pottery using active vision. In Proceedings of the 20th Workshop of the Austrian Association for Pattern Recognition (OAGM/AAPR) on Pattern Recognition 1996, (pp. 251-261).

Halir, R., & Flusser, J. (1997). Estimation of profiles of sherds of archaeological pottery. In Proceedings of the of the Czech Pattern Recognition Workshop (CPRW'97), Czech Republic, February 1997, 1-5, (pp. 126-130).

Halir, R. (1999). An Automatic Estimation Of The Axis Of Rotation Of Fragments Of Archaeological Pottery: A Multi-Step Model-Based Approach. In Proceedings of the 7th International Conference in Central Europe on Computer Graphics, Visualization and Interactive Digital Media (WSCG '99) https://semanticscholar.org/0248/ae5a8dca3d2c6bfff282ce481a5625d32362

Hall, N. S., & Laflin, S. (1984). A computer aided design technique for pottery profiles. In Computer applications in Archaeology, (pp. 178-188). Computer Center, University of Birmingham Birmingham. Retrieved from https://www.bcin.ca/bcin/detail.app?id=40524

Han, D., & Hahn, H. S. (2014). Axis estimation and grouping of rotationally symmetric object segments. Pattern Recognition, 47(1), 296-312. https://doi.org/10.1016/j.patcog.2013.06.022

Hlavackova-Schindler, K., Kampel, M., & Sablatnig, R. (2001). Fitting of a Closed Planar Curve Representing a Profile of an Archaeological Fragment. In Proceedings VAST 2001 Virtual Reality, Archeology, and Cultural Heritage, (pp. 263-269). https://doi.org/10.1145/585031.585034

Huang, Q. X., Flöry, S., Gelfand, N., Hofer, M., & Pottmann, H. (2006). Reassembling fractured objects by geometric matching. ACM SIGGRAPH 2006 Papers, SIGGRAPH '06, (May), (pp. 569-578). https://doi.org/10.1145/1179352.1141925

Igwe, P. C., & Knopf, G. K. (2006). 3D object reconstruction using geometric computing. Geometric Modeling and Imaging New Trends, 9-14. https://doi.org/10.1109/GMAI.2006.1

Kalasarinis, I., & Koutsoudis, A. (2019). Assisting pottery restoration procedures with digital technologies. International Journal of Computational Methods in Heritage Science, 3(1), 20-32. https://doi.org/10.4018/ijcmhs.2019010102

Kampel, M., & Sablatnig, R. (2003). Profile-based Pottery Reconstruction. In IEEE Proceeding of Conference on Computer Vision and Pattern Recognition Workshops, Wisconsin, June, (pp. 1-6). https://doi.org/10.1109/CVPRW.2003.10007

Kampel, M, & Mara, H. (2005). Robust 3D reconstruction of archaeological pottery based on concentric circular rills. In Proceedings of the Sixth International. Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS'05), Montreux, Switzerland, (pp. 14-20). Retrieved from https://semanticscholar.org/43df/9b3c6fef5aa54964bdc4825a86cc4e9f4531

Kampel, M., & Sablatnig, R. (2003). An automated pottery archival and reconstruction system. Journal of Visualization and Computer Animation, 14(3), 111-120. https://doi.org/10.1002/vis.310

Kampel, M., & Sablatnig, R. (2004). 3D Puzzling of Archeological Fragments. In Proceedings of 9th Computer Vision Winter Workshop, (February), (pp. 31-40). Retrieved from https://cvl.tuwien.ac.at/wp-content/uploads/2014/12/cvww041

Karasik, A., & Smilansky, U. (2011). Computerized morphological classification of ceramics. Journal of Archaeological Science, 38(10), 2644-2657. https://doi.org/10.1016/j.jas.2011.05.023

Kashihara, K. (2012). Three-dimensional reconstruction of artifacts based on a hybrid genetic algorithm. In IEEE International Conference on Systems, Man and Cybernetics, (pp. 900-905). https://doi.org/10.1109/ICSMC.2012.6377842

Kashihara, K. (2017). An intelligent computer assistance system for artifact restoration based on genetic algorithms with plane image features. International Journal of Computational Intelligence and Applications, 16(3), 1-15. https://doi.org/10.1142/S1469026817500213

Kleber, F., & Sablatnig, R. (2009). A survey of techniques for document and archaeology artifact reconstruction. In Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, (March 2014), (pp. 1061-1065). https://doi.org/10.1109/ICDAR.2009.154

Kotoula, E. (2016). Semiautomatic fragments matching and virtual reconstruction: a case study on ceramics. International Journal of Conservation Science, 7(1), 71-86. Retrieved from http://eprints.lincoln.ac.uk/id/eprint/31035/

Lucena, M., Martínez-Carrillo, A. L., Fuertes, J. M., Javier Carrascosa Malagón, F., & Ruiz Rodríguez, A. (2016). Decision support system for classifying archaeological pottery profiles based on mathematical morphology. Multimedia Tools and Applications, 75(7), 3677-3691. https://doi.org/10.1007/s11042-014-2063-6

Maiza, C., & Gaildrat, V. (2005). Automatic classification of archaeological potsherds. In Proceedings of the 8th International Conference on Computer Graphics and Artificial Intelligence, Limoges, France, May 11-12, 2005, (pp. 135-147). https://semanticscholar.org/3c95/82c3e562b44e7d61dc0fd3487ea3dc977ff3

Mara, H., Kampel, M., & Sablatnig, R. (2002). Preprocessing of 3D-Data for Classification of Archaeological Fragments in an Automated System. In Proceedings of the 26th Workshop of the Austrian Association for Pattern Recognition, Vision with Non-Traditional Sensors, (ÖAGM/AAPR), Graz, Austria, 10-11 September 2002, (pp. 257-264). https://doi.org/10.1.1.15.748

Mara, H., & Sablatnig, R. (2006). The orientation of fragments of rotationally symmetrical 3D-shapes for archaeological documentation. In Proceedings - Third International Symposium on 3D Data Processing, Visualization, and Transmission, 3DPVT 2006, (June), (pp. 1064-1071). https://doi.org/10.1109/3DPVT.2006.105

Melero, F. J., Torres, J. C., & Leon, A. (2003). On the interactive 3d reconstruction of Iberian vessels. In 4th International Symposium on Virtual Reality, Archaeology, and Intelligent Cultural Heritage, VAST, 3, (pp. 71-78). http://dx.doi.org/10.2312/VAST/VAST03/071-078

Papaioannou, G., Karabassi, E. a., & Theoharis, T. (2000). Automatic Reconstruction of Archaeological Finds-A Graphics Approach. In International Conference on Computer Graphics and Artificial Intelligence, (March), (pp. 117-125). Retrieved from https://semanticscholar.org/6a3c/7ec8f544bbfb83174d868cd406eaaf40f438

Papaioannou, G., Karabassi, E. A., & Theoharis, T. (2002). Reconstruction of three-dimensional objects through the matching of their parts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(1), 114-124. https://doi.org/10.1109/34.982888

Pulli, K. (1999). Multiview registration for large data sets. In Proceedings of Second International Conference on 3D Digital Imaging and Modeling, Ottawa, ON, Canada, 4-8 December 1999, (pp. 160-168). http://doi.org/10.1109/IM.1999.805346

Rasheed, N. A., & Nordin, J. (2015a). A Survey of Computer Methods in Reconstruction of 3D Archaeological Pottery Objects. International Journal of Advanced Research, 3(3), 712-714. Retrieved from https://academia.edu.documents/45540231

Rasheed, N. A., & Nordin, M. J. (2014). A polynomial function in the automatic reconstruction of fragmented objects. Journal of Computer Science, 10(11), 2339-2348. https://doi.org/10.3844/jcssp.2014.2339.2348

Rasheed, N. A., & Nordin, M. J. (2015b). Archaeological fragments classification based on RGB color and texture features. Journal of Theoretical and Applied Information Technology, 76(3), 358-365. Retrieved from http://repository.uobabylon.edu.iq/papers/publication.aspx?pubid=6746

Rasheed, N. A., & Nordin, M. J. (2018). Classification and reconstruction algorithms for the archaeological fragments. Journal of King Saud University-Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2018.09.019

Rasheed, N. A., Nordin, M. J., Dakheel, A. H., Nados, W. L., & Maaroof, M. K. A. (2017). Classification archaeological fragments into groups. Research Journal of Applied Sciences, Engineering, and Technology, 14(9), 324-333. https://doi.org/10.19026/rjaset.14.5072

Sablatnig, R., & Menard, C. (1997). 3D Reconstruction of Archaeological Pottery using Profile Primitives. In Proceedings of I International Workshop on Synthetic-Natural Hybrid Coding and Three-Dimensional Imaging, (pp. 93-96).

Sablatnig, R., Menard, C., & Kropatseh, W. (1998). Classification of archaeological fragments using a description language. In Proceedings of European Signal Processing Conference, (Eusipco '98), (pp. 1097-1100), 1998.

Sakpere, W. (2019). 3D Reconstruction of Archaeological Pottery from Its Point Cloud. In Proceedings of Iberian Conference on Pattern Recognition and Image Analysis, (pp. 125-136). https://doi.org/10.1007/978-3-030-31332-6_11

Shin, H., Doumas, C., Funkhouser, T., Rusinkiewicz, S., Steiglitz, K.,

Vlachopoulos, & Weyrich, T. (2010). Analyzing Fracture Patterns in Theran Wall Paintings. In Proceedings of the 11th International Symposium on Virtual Reality, Archaeology - VAST, (pp. 71-78). https://doi.org/10.2312/VAST/VAST10/071-078

Son, K., Almeida, E. B., & Cooper, D. B. (2013). Axially symmetric 3D pots configuration system using the axis of symmetry and break curve. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (pp. 257-264). https://doi.org/10.1109/CVPR.2013.40

Stamatopoulos, M. I., & Anagnostopoulos, C.-N. (2016). 3D digital reassembling of archaeological ceramic pottery fragments based on their thickness profile. The Computing Research Repository (CoRR). Retrieved from https://arxiv.org/abs/1601.05824

Toler-Franklin, C., Funkhouser, T., Rusinkiewicz, S., Brown, B., & Weyrich, T. (2010). Multi-Feature Matching of Fresco Fragments. ACM Transactions on Graphics, 29(6), 1-12. https://doi.org/10.1145/1882261.1866207

Üçoluk, G., & Hakki Toroslu, I. (1999). Automatic reconstruction of broken 3-D surface objects. Computers and Graphics, 23(4), 573-582. https://doi.org/10.1016/S0097-8493(99)00075-8

Vendrell-Vidal, E., & Sánchez-Belenguer, C. (2014). A Discrete Approach for Pairwise Matching of Archaeological Fragments. Journal on Computing and Cultural Heritage, 7(3), 1-19. https://doi.org/10.1145/2597178

Willis, A., Orriols, X., & Cooper, D. B. (2003). Accurately Estimating Sherd 3D Surface Geometry with Application to Pot Reconstruction. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, (16-22 June 2003), Madison, Wisconsin, USA (pp. 1-7). https://doi.org/10.1109/CVPRW.2003.10014

Willis, A. R., & Cooper, D. B. (2004). Bayesian assembly of 3D axially symmetric shapes from fragments. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1, (pp. 82-89). https://doi.org/10.1109/cvpr.2004.1315017

Zhou, Mingquam, Geng, G., Wu, Z., Zheng, X., Shui, W., Lu, K., & Gao, Y. (2007). A system for re-assembly of fragment objects and computer-aided restoration of cultural relics. Virtual Retrospect 2007, 3, 21-27. Retrieved from http://hal.univ-savoie.fr/ENIB/hal-01765241v1

Zhou, Mingquan, Geng, G., Wu, Z., & Shui, W. (2010). A Virtual Restoration System for Broken Pottery. In Proceedings of the CAA Conference 37th Computer applications and quantitative methods in archaeology, Williamsburg, VA, USA, 22-26 March 2009; (pp. 391-396). Retrieved from https://semanticscholar.org/87b5/aa5c7710806677abbedb4e43f6134e053041

[-]

This item appears in the following Collection(s)

Show full item record