- -

Influence of the secondary motions on pollutant mixing in a meandering open channel flow

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of the secondary motions on pollutant mixing in a meandering open channel flow

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Moncho Esteve, Ignacio José es_ES
dc.contributor.author Folke, F. es_ES
dc.contributor.author García-Villalba, Manuel es_ES
dc.contributor.author Palau-Salvador, Guillermo es_ES
dc.date.accessioned 2020-07-18T03:31:28Z
dc.date.available 2020-07-18T03:31:28Z
dc.date.issued 2017-08 es_ES
dc.identifier.issn 1567-7419 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148235
dc.description.abstract [EN] This paper presents large eddy simulation of turbulent flow in a meandering open channel with smooth wall and rectangular cross-section. The Reynolds number based on the channel height is 40,000 and the aspect ratio of the cross-section is 4.48. The depthaveraged mean stream-wise velocity agree well to experimental measurements. In this specific case, two interacting cells are formed that swap from one bend to the other. Transport and mixing of a pollutant is analysed using three different positions of release, e.g. on the inner bank, on the outer bank and on the centre of the cross section. The obtained depth-average mean concentration profiles are reasonably consistent with available experimental data. The role of the secondary motions in the mixing processes is the main focus of the discussion. It is found that the mixing when the scalar is released on the centre of the cross-section is stronger and faster than the mixing of the scalar released on the sides. When the position of release is close to a bank side, the mixing is weaker and a clear concentration of scalar close to the corresponding side-wall can be observed in both cases. es_ES
dc.description.sponsorship MGV acknowledges the financial support of the Spanish Ministry of Education through the program Jose Castillejo. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Environmental Fluid Mechanics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Large Eddy simulation es_ES
dc.subject Pollutant mixing es_ES
dc.subject River flow es_ES
dc.subject Turbulence es_ES
dc.subject.classification INGENIERIA AGROFORESTAL es_ES
dc.title Influence of the secondary motions on pollutant mixing in a meandering open channel flow es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10652-017-9513-4 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Rural y Agroalimentaria - Departament d'Enginyeria Rural i Agroalimentària es_ES
dc.description.bibliographicCitation Moncho Esteve, IJ.; Folke, F.; García-Villalba, M.; Palau-Salvador, G. (2017). Influence of the secondary motions on pollutant mixing in a meandering open channel flow. Environmental Fluid Mechanics. 17(4):695-714. https://doi.org/10.1007/s10652-017-9513-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10652-017-9513-4 es_ES
dc.description.upvformatpinicio 695 es_ES
dc.description.upvformatpfin 714 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\361550 es_ES
dc.contributor.funder Ministerio de Educación es_ES
dc.description.references Julien PY, Duan JG (2005) Numerical simulation of the inception of channel meandering. Earth Surf Process Landf J Br Geomorphol Res Group 30:1093–1110 es_ES
dc.description.references Boussinesq J (1868) Mémoire sur l’influence des frottements dans les mouvements reguliers des fluids. J Math Pures Appl 13:377–424 es_ES
dc.description.references Thomson J (1876) On the origin of windings of rivers in alluvial plains, with remarks on the flow of water round bends in pipes. Proc R Soc Lond 25:5–8 es_ES
dc.description.references Booij R, Tukker J (1996) 3-Dimensional laser-doppler measurements in a curved flume. In: Adrian RJ, Durão DFG, Durst F, Heitor MV, Maeda M, Whitelaw JH (eds) Developments in laser techniques and applications to fluid mechanics. Springer, Berlin, pp 98–114 es_ES
dc.description.references Muto Y (1997) Turbulent flow in two-stage meandering channels. Ph.D. The University of Bradford es_ES
dc.description.references Shiono K, Muto Y (1998) Complex flow mechanisms in compound meandering channels with overbank flow. J Fluid Mech 376:221–261. doi: 10.1017/S0022112098002869 es_ES
dc.description.references Tominaga A, Nagao M, Nezu I (1999) Flow structure and momentum transport processes in curved open-channels with vegetation. In: Proceedings of 28th IAHR Congress es_ES
dc.description.references Booij R (2003) Measurements and large eddy simulations of the flows in some curved flumes. J Turbul 4:N8. doi: 10.1088/1468-5248/4/1/008 es_ES
dc.description.references Jia Y, Blanckaert K, Wang SS (2001) Numerical simulation of secondary currents in curved channels. In: Proceedings of 8th FMTM-Congress es_ES
dc.description.references Mockmore C (1943) Flow around bends in stable channels. Trans ASCE 3:334 es_ES
dc.description.references Blanckaert K, De Vriend HJ (2004) Secondary flow in sharp open-channel bends. J Fluid Mech 498:353–380. doi: 10.1017/S0022112003006979 es_ES
dc.description.references Balen WV, Uijttewaal WSJ, Blanckaert K (2009) Large-eddy simulation of a mildly curved open-channel flow. J Fluid Mech 630:413–442. doi: 10.1017/S0022112009007277 es_ES
dc.description.references van Balen W, Blanckaert K, Uijttewaal WSJ (2010) Analysis of the role of turbulence in curved open-channel flow at different water depths by means of experiments, LES and RANS. J Turbul 11:N12. doi: 10.1080/14685241003789404 es_ES
dc.description.references Christensen HB (1999) Secondary turbulent flow in an infinte bend. Iahr Symp. River Coast. Estuar. Morphodynamics es_ES
dc.description.references Blanckaert K, Graf WH (2004) Momentum transport in sharp open-channel bends. J Hydraul Eng 130:186–198. doi: 10.1061/(ASCE)0733-9429(2004)130:3(186) es_ES
dc.description.references Stoesser T, Ruether N, Olsen NRB (2010) Calculation of primary and secondary flow and boundary shear stresses in a meandering channel. Adv Water Resour 33:158–170. doi: 10.1016/j.advwatres.2009.11.001 es_ES
dc.description.references Blanckaert K, Duarte A, Chen Q, Schleiss AJ (2012) Flow processes near smooth and rough (concave) outer banks in curved open channels. J Geophys Res Earth Surf 117:F04020. doi: 10.1029/2012JF002414 es_ES
dc.description.references Vaghefi M, Akbari M, Fiouz AR (2016) An experimental study of mean and turbulent flow in a 180 degree sharp open channel bend: secondary flow and bed shear stress. KSCE J Civ Eng 20:1582–1593. doi: 10.1007/s12205-015-1560-0 es_ES
dc.description.references Kang S, Lightbody A, Hill C, Sotiropoulos F (2011) High-resolution numerical simulation of turbulence in natural waterways. Adv Water Resour 34:98–113. doi: 10.1016/j.advwatres.2010.09.018 es_ES
dc.description.references Engel FL, Rhoads BL (2016) Three-dimensional flow structure and patterns of bed shear stress in an evolving compound meander bend. Earth Surf Process Landf 41:1211–1226. doi: 10.1002/esp.3895 es_ES
dc.description.references Khosronejad A, Hansen AT, Kozarek JL, Guentzel K, Hondzo M, Guala M, Wilcock P, Finlay JC, Sotiropoulos F (2016) Large eddy simulation of turbulence and solute transport in a forested headwater stream. J Geophys Res Earth Surf 121:2014JF003423. doi: 10.1002/2014JF003423 es_ES
dc.description.references Mera I, Franca MJ, Anta J, Peña E (2015) Turbulence anisotropy in a compound meandering channel with different submergence conditions. Adv Water Resour 81:142–151. doi: 10.1016/j.advwatres.2014.10.012 es_ES
dc.description.references Termini D (2015) Momentum transport and bed shear stress distribution in a meandering bend: experimental analysis in a laboratory flume. Adv Water Resour 81:128–141. doi: 10.1016/j.advwatres.2015.01.005 es_ES
dc.description.references Chang Y (1971) Lateral mixing in meandering channels. Ph.D., The University of Iowa es_ES
dc.description.references Fischer HB (1969) The effect of bends on dispersion in streams. Water Resour Res 5:496–506. doi: 10.1029/WR005i002p00496 es_ES
dc.description.references Rozovskii IL (1957) Flow of water in bends of open channels. Kiev Acad. Sci. Ukr. SSR Isr. Program Sci. Transl. Wash. DC Available Off. Tech. Serv. US Dept Commer. 1957 Ie Jerus. 1961 es_ES
dc.description.references Taylor G (1954) The dispersion of matter in turbulent flow through a pipe. Proc R Soc Lond Math Phys Eng Sci 223:446–468. doi: 10.1098/rspa.1954.0130 es_ES
dc.description.references Elder JW (1959) The dispersion of marked fluid in turbulent shear flow. J Fluid Mech 5:544–560. doi: 10.1017/S0022112059000374 es_ES
dc.description.references Boxall JB, Guymer I (2003) Analysis and prediction of transverse mixing coefficients in natural channels. J Hydraul Eng 129:129–139. doi: 10.1061/(ASCE)0733-9429(2003)129:2(129) es_ES
dc.description.references Demuren AO, Rodi W (1984) Calculation of turbulence-driven secondary motion in non-circular ducts. J Fluid Mech 140:189–222. doi: 10.1017/S0022112084000574 es_ES
dc.description.references Sharma H, Ahmad Z (2014) Transverse mixing of pollutants in streams: a review. Can J Civ Eng 41:472–482. doi: 10.1139/cjce-2013-0561 es_ES
dc.description.references Booij R (1995) Eddy laser Doppler measurements and turbulence modeling of the flow in a curved flume. In: Proceedings of 1995 ASMEJSME Fluid Eng 6 Th Int Laser Anemometry Conference on Laser Anemometry Hilton Head SC es_ES
dc.description.references Stoesser T, Ruether N, Olsen N (2008) Near-bed flow behavior in a meandering channel. In: RiverFlow 2008 4th International Conference on Fluvial Hydraulics es_ES
dc.description.references Kang S, Sotiropoulos F (2011) Flow phenomena and mechanisms in a field-scale experimental meandering channel with a pool-riffle sequence: insights gained via numerical simulation. J Geophys Res Earth Surf 116:F03011. doi: 10.1029/2010JF001814 es_ES
dc.description.references Xu D, Bai Y, Munjiza A, Avital E, Williams J (2013) Investigation on the characteristics of turbulent flow in a meandering open channel bend using large eddy simulation. In: Proceedings of 2013 IAHR World Congress es_ES
dc.description.references Demuren AO, Rodi W (1986) Calculation of flow and pollutant dispersion in meandering channels. J Fluid Mech 172:63–92. doi: 10.1017/S0022112086001659 es_ES
dc.description.references Breuer M, Rodi W (1994) Large-eddy simulation of turbulent flow through a straight square duct and a 180° bend. In: Voke PR, Kleiser L, Chollet J-P (eds) Direct large-eddy simulation I. Springer, Netherlands, pp 273–285 es_ES
dc.description.references Hinterberger C (2004) Dreidimensionale und tiefengemittelte large-eddy-simulation von Flachwasserströmungen. Ph.D., University of Karlsruhe es_ES
dc.description.references Rhie CM, Chow WL (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J 21:1525–1532. doi: 10.2514/3.8284 es_ES
dc.description.references Stone H (1968) Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM J Numer Anal 5:530–558. doi: 10.1137/0705044 es_ES
dc.description.references Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91:99–164. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 es_ES
dc.description.references Hinterberger C, Fröhlich J, Rodi W (2007) Three-dimensional and depth-averaged large-eddy simulations of some shallow water flows. J Hydraul Eng. doi: 10.1061/(ASCE)0733-9429(2007)133:8(857) es_ES
dc.description.references Zhu J (1991) A low-diffusive and oscillation-free convection scheme. Commun Appl Numer Methods 7:225–232. doi: 10.1002/cnm.1630070307 es_ES
dc.description.references Denev JA, Fröhlich J, Bockhorn H (2009) Large eddy simulation of a swirling transverse jet into a crossflow with investigation of scalar transport. Phys Fluids 21:015101. doi: 10.1063/1.3054148 es_ES
dc.description.references Palau-Salvador G, García-Villalba M, Rodi W (2011) Scalar transport from point sources in the flow around a finite-height cylinder. Environ Fluid Mech 11:611–625. doi: 10.1007/s10652-010-9199-3 es_ES
dc.description.references Fröhlich J, García-Villalba M, Rodi W (2007) Scalar mixing and large-scale coherent structures in a turbulent swirling jet. Flow Turbul Combust 80:47–59. doi: 10.1007/s10494-007-9121-3 es_ES
dc.description.references García-Villalba M, Palau-Salvador G, Rodi W (2014) Forced convection heat transfer from a finite-height cylinder. Flow Turbul Combust 93:171–187. doi: 10.1007/s10494-014-9543-7 es_ES
dc.description.references Blanckaert K, Graf WH (2001) Mean flow and turbulence in open-channel bend. J Hydraul Eng 127:835–847. doi: 10.1061/(ASCE)0733-9429(2001)127:10(835) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem