- -

Air quality data clustering using EPLS method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Desde el lunes 3 y hasta el jueves 20 de marzo, RiuNet funcionará en modo de solo lectura a causa de su actualización a una nueva versión.

Air quality data clustering using EPLS method

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Chen, Yunlian es_ES
dc.contributor.author Wang, Lizhe es_ES
dc.contributor.author Li, Fangyuan es_ES
dc.contributor.author Du, Bo es_ES
dc.contributor.author Choo, Kim-Kwang Raymond es_ES
dc.contributor.author Hassan Mohamed, Houcine es_ES
dc.contributor.author Qin, Wenjian es_ES
dc.date.accessioned 2020-07-18T03:31:36Z
dc.date.available 2020-07-18T03:31:36Z
dc.date.issued 2017-07 es_ES
dc.identifier.issn 1566-2535 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148239
dc.description.abstract [EN] Nowadays air quality data can be easily accumulated by sensors around the world. Analysis on air quality data is very useful for society decision. Among five major air pollutants which are calculated for AQI (Air Quality Index), PM2.5 data is the most concerned by the people. PM2.5 data is also cross-impacted with the other factors in the air and which has properties of non-linear non-stationary including high noise level and outlier. Traditional methods cannot solve the problem of PM2.5 data clustering very well because of their inherent characteristics. In this paper, a novel model-based feature extraction method is proposed to address this issue. The EPLS model includes: (1) Mode Decomposition, in which EEMD algorithm is applied to the aggregation dataset; (2) Dimension Reduction, which is carried out for a more significant set of vectors; (3) Least Squares Projection, in which all testing data are projected to the obtained vectors. Synthetic dataset and air quality dataset are applied to different clustering methods and similarity measures. Experimental results demonstrate that EPLS is efficient in dealing with high noise level and outlier air quality clustering problems, and which can also be adapted to various clustering techniques and distance measures. (C) 2016 Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship This work was supported in part by the National Natural Science Foundation of China (Nos. 61440018, 61501411), the Hubei Natural Science Foundation (No. 2014CFB904), China Scholarship Council Funding. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Information Fusion es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Air quality es_ES
dc.subject PM2.5 es_ES
dc.subject Clustering es_ES
dc.subject EEMD es_ES
dc.subject PCA es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Air quality data clustering using EPLS method es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.inffus.2016.11.015 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//61440018/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//61501411/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Natural Science Foundation of Hubei Province//2014CFB904/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Chen, Y.; Wang, L.; Li, F.; Du, B.; Choo, KR.; Hassan Mohamed, H.; Qin, W. (2017). Air quality data clustering using EPLS method. Information Fusion. 36:225-232. https://doi.org/10.1016/j.inffus.2016.11.015 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.inffus.2016.11.015 es_ES
dc.description.upvformatpinicio 225 es_ES
dc.description.upvformatpfin 232 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 36 es_ES
dc.relation.pasarela S\348697 es_ES
dc.contributor.funder China Scholarship Council es_ES
dc.contributor.funder Natural Science Foundation of Hubei Province es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem