- -

Tetrahydroisoquinolines functionalized with carbamates as selective ligands of D2 dopamine receptor

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tetrahydroisoquinolines functionalized with carbamates as selective ligands of D2 dopamine receptor

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Parravicini, Oscar es_ES
dc.contributor.author Bogado, M. Lucrecia es_ES
dc.contributor.author Rojas, Sebastián es_ES
dc.contributor.author Angelina, Emilio L. es_ES
dc.contributor.author Andujar, Sebastián A. es_ES
dc.contributor.author Gutierrez, Lucas J. es_ES
dc.contributor.author Cabedo Escrig, Nuria es_ES
dc.contributor.author López-Gresa, María Pilar es_ES
dc.contributor.author Sanz, M. Jesús es_ES
dc.contributor.author Cortes, Diego es_ES
dc.contributor.author Enriz, Ricardo D. es_ES
dc.date.accessioned 2020-07-22T03:31:33Z
dc.date.available 2020-07-22T03:31:33Z
dc.date.issued 2017-09 es_ES
dc.identifier.issn 0948-5023 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148456
dc.description.abstract [EN] A series of tetrahydroisoquinolines functionalized with carbamates is reported here as highly selective ligands on the dopamine D2 receptor. These compounds were selected by means of a molecular modeling study. The studies were carried out in three stages: first an exploratory study was carried out using combined docking techniques and molecular dynamics simulations. According to these results, the bioassays were performed; these experimental studies corroborated the results obtained by molecular modeling. In the last stage of our study, a QTAIM analysis was performed in order to determine the main molecular interactions that stabilize the different ligand-receptor complexes. Our results show that the adequate use of combined simple techniques is a very useful tool to predict the potential affinity of new ligands at dopamine D1 and D2 receptors. In turn the QTAIM studies show that they are very useful to evaluate in detail the molecular interactions that stabilize the different ligand-receptor complexes; such information is crucial for the design of new ligands. es_ES
dc.description.sponsorship This work was supported by Universidad Nacional de San Luis (UNSL) and CONICET grants 2-1214 and PIP444, respectively. E.L.A, L.J.G, S.A.A and R.D.E are staff members of the National Scientific and Technical Research Council - Argentina ( CONICET, Argentina). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Molecular Modeling es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject THIQs functionalized with carbamates es_ES
dc.subject Selective ligands of D2DR es_ES
dc.subject Molecular modeling es_ES
dc.subject QTAIM analysis es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Tetrahydroisoquinolines functionalized with carbamates as selective ligands of D2 dopamine receptor es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1007/s00894-017-3441-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONICET//2-1214/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONICET//PIP 444/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Parravicini, O.; Bogado, ML.; Rojas, S.; Angelina, EL.; Andujar, SA.; Gutierrez, LJ.; Cabedo Escrig, N.... (2017). Tetrahydroisoquinolines functionalized with carbamates as selective ligands of D2 dopamine receptor. Journal of Molecular Modeling. 23(9):1-14. https://doi.org/10.1007/s00894-017-3441-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 2nd Congress of Theoretical Chemists of Latin Expression (QUITEL 2016) es_ES
dc.relation.conferencedate Noviembre 20-25,2016 es_ES
dc.relation.conferenceplace Montevideo, Uruguay es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00894-017-3441-6 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 9 es_ES
dc.identifier.pmid 28866777 es_ES
dc.relation.pasarela S\342934 es_ES
dc.contributor.funder Universidad Nacional de San Luis, Argentina es_ES
dc.contributor.funder Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina es_ES
dc.description.references Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63(1):182–217. https://doi.org/10.1124/pr.110.002642 es_ES
dc.description.references Luthra PM, Kumar JBS (2012) Plausible improvements for selective targeting of dopamine receptors in therapy of Parkinson’s disease. Mini-Rev Med Chem 12(14):1556–1564. https://doi.org/10.2174/138955712803832645 es_ES
dc.description.references Poewe W (2009) Treatments for Parkinson disease-past achievements and current clinical needs. Neurology 72 (7 SUPPL. 2):S65-S73. https://doi.org/10.1212/WNL.0b013e31819908ce es_ES
dc.description.references Seeman P, Watanabe M, Grigoriadis D (1985) Dopamine D2 receptor binding sites for agonists: a tetrahedral model. Mol Pharmacol 28(5):391–399 es_ES
dc.description.references McDonald WM, Sibley DR, Kilpatrick BF, Caron MG (1984) Dopaminergic inhibition of adenylate cyclase correlates with high affinity agonist binding to anterior pituitary D2 dopamine receptors. Mol Cell Endocrinol 36(3):201–209. https://doi.org/10.1016/0303-7207(84)90037-6 es_ES
dc.description.references Mottola DM, Laiter S, Watts VJ, Tropsha A, Wyrick SD, Nichols DE, Mailman RB (1996) Conformational analysis of D1 dopamine receptor agonists: pharmacophore assessment and receptor mapping. J Med Chem 39(1):285–296. https://doi.org/10.1021/jm9502100 es_ES
dc.description.references Alkorta I, Villar HO (1993) Considerations on the recognition of the D1 receptor by agonists. J Comput Aided Mol Des 7(6):659–670. https://doi.org/10.1007/BF00125324 es_ES
dc.description.references Cueva JP, Giorgioni G, Grubbs RA, Chemel BR, Watts VJ, Nichols DE (2006) Trans-2,3-dihydroxy-6a,7,8,12b-tetrahydro-6H-chromeno[3,4-c]isoquinoline: synthesis, resolution, and preliminary pharmacological characterization of a new dopamine D1 receptor full agonist. J Med Chem 49(23):6848–6857. https://doi.org/10.1021/jm0604979 es_ES
dc.description.references Negash K, Nichols DE, Watts VJ, Mailman RB (1997) Further definition of the D1 dopamine receptor pharmacophore: synthesis of trans-6,6a,7,8,9,13b-hexahydro-5h-benzo[d]naphth[2,1-b]azepines as rigid analogues of β-phenyldopamine. J Med Chem 40(14):2140–2147. https://doi.org/10.1021/jm970157a es_ES
dc.description.references Pettersson I, Liljefors T (1987) Structure-activity relationships for apomorphine congeners. Conformational energies vs. biological activities. J Comput Aided Mol Des 1(2):143–152. https://doi.org/10.1007/BF01676958 es_ES
dc.description.references Tonani R, Dunbar Jr J, Edmonston B, Marshall GR (1987) Computer-aided molecular modeling of a D2-agonist dopamine pharmacophore. J Comput Aided Mol Des 1(2):121–132. https://doi.org/10.1007/BF01676956 es_ES
dc.description.references Mewshaw RE, Kavanagh J, Stack G, Marquis KL, Shi X, Kagan MZ, Webb MB, Katz AH, Park A, Kang YH, Abou-Gharbia M, Scerni R, Wasik T, Cortes-Burgos L, Spangler T, Brennan JA, Piesla M, Mazandargmi H, Cockett MI, Ochalski R, Coupet J, Andree TH (1997) New generation dopaminergic agents. 1. Discovery of a novel scaffold which embraces the D2 agonist pharmacophore. Structure-activity relationships of a series of 2-(aminomethyl)chromans. J Med Chem 40(26):4235–4256. https://doi.org/10.1021/jm9703653 es_ES
dc.description.references Chidester CG, Lin CH, Lahti RA, Haadsma-Svensson SR, Smith MW (1993) Comparison of 5-HT1A and dopamine D2 pharmacophores. X-ray structures and affinities of conformationally constrained ligands. J Med Chem 36(10):1301–1315 es_ES
dc.description.references Alkorta I, Villar HO (1994) Molecular electrostatic potential of d1 and d2 dopamine agonists. J Med Chem 37(1):210–213 es_ES
dc.description.references Wilcox RE, Tseng T, Brusniak MYK, Ginsburg B, Pearlman RS, Teeter M, Durand C, Starr S, Neve KA (1998) CoMFA-based prediction of agonist affinities at recombinant D1 vs D2 dopamine receptors. J Med Chem 41(22):4385–4399. https://doi.org/10.1021/jm9800292 es_ES
dc.description.references El Aouad N, Berenguer I, Romero V, Marín P, Serrano A, Andujar S, Suvire F, Bermejo A, Ivorra MD, Enriz RD, Cabedo N, Cortes D (2009) Structure-activity relationship of dopaminergic halogenated 1-benzyl-tetrahydroisoquinoline derivatives. Eur J Med Chem 44(11):4616–4621. https://doi.org/10.1016/j.ejmech.2009.06.033 es_ES
dc.description.references Berenguer I, Aouad NE, Andujar S, Romero V, Suvire F, Freret T, Bermejo A, Ivorra MD, Enriz RD, Boulouard M, Cabedo N, Cortes D (2009) Tetrahydroisoquinolines as dopaminergic ligands: 1-butyl-7-chloro-6-hydroxy-tetrahydroisoquinoline, a new compound with antidepressant-like activity in mice. Bioorg Med Chem 17(14):4968–4980. https://doi.org/10.1016/j.bmc.2009.05.079 es_ES
dc.description.references Andujar S, Suvire F, Berenguer I, Cabedo N, Marin P, Moreno L, Dolores Ivorra M, Cortes D, Enriz RD (2012) Tetrahydroisoquinolines acting as dopaminergic ligands. A molecular modeling study using MD simulations and QM calculations. J Mol Model 18(2):419–431. https://doi.org/10.1007/s00894-011-1061-0 es_ES
dc.description.references Angelina E, Andujar S, Tosso RD, Enriz RD, Peruchena N (2014) Non-covalent interactions in receptor–ligand complexes. A study based on the electron charge density. J Phys Org Chem 27:128–134 es_ES
dc.description.references Parraga J, Cabedo N, Andujar S, Piqueras L, Moreno L, Galan A, Angelina E, Enriz RD, Ivorra MD, Sanz MJ, Cortes D (2013) 2,3,9- and 2,3,11-trisubstituted tetrahydroprotoberberines as D2 dopaminergic ligands. Eur J Med Chem 68:150–166 es_ES
dc.description.references Andujar SA, de Angel BM, Charris JE, Israel A, Suarez-Roca H, Lopez SE, Garrido MR, Cabrera EV, Visbal G, Rosales C, Suvire FD, Enriz RD, Angel-Guio JE (2008) Synthesis, dopaminergic profile, and molecular dynamics calculations of N-aralkyl substituted 2-aminoindans. Bioorg Med Chem 16(6):3233–3244 es_ES
dc.description.references Párraga J, Andujar SA, Rojas S, Gutierrez LJ, El Aouad N, Sanz MJ, Enriz RD, Cabedo N, Cortes D (2016) Dopaminergic isoquinolines with hexahydrocyclopenta[ij]-isoquinolines as D2−like selective ligands. Eur J Med Chem 122:27-42. https://doi.org/10.1016/j.ejmech.2016.06.009 es_ES
dc.description.references Galán A, Moreno L, Párraga J, Serrano Á, Sanz MJ, Cortes D, Cabedo N (2013) Novel isoquinoline derivatives as antimicrobial agents. Bioorg Med Chem 21(11):3221–3230. https://doi.org/10.1016/j.bmc.2013.03.042 es_ES
dc.description.references Malo M, Brive L, Luthman K, Svensson P (2010) Selective pharmacophore models of dopamine D1 and D2 full agonists based on extended pharmacophore features. ChemMedChem 5(2):232–246. https://doi.org/10.1002/cmdc.200900398 es_ES
dc.description.references Lan H, DuRand CJ, Teeter MM, Neve KA (2006) Structural determinants of pharmacological specificity between D 1 and D2 dopamine receptors. Mol Pharmacol 69(1):185–194. https://doi.org/10.1124/mol.105.017244 es_ES
dc.description.references Neve KA, Cumbay MG, Thompson KR, Yang R, Buck DC, Watts VJ, Durand CJ, Teeter MM (2001) Modeling and mutational analysis of a putative sodium-binding pocket on the dopamine D2 receptor. Mol Pharmacol 60(2):373–381 es_ES
dc.description.references Kalani MYS, Vaidehi N, Hall SE, Trabanino RJ, Freddolino PL, Kalani MA, Floriano WB, Wai Tak Kam V, Goddard Iii WA (2012) The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists. Proc Natl Acad Sci USA 101:3815–3820 es_ES
dc.description.references Becker OM, Marantz Y, Shacham S, Inbal B, Heifetz A, Kalid O, Bar-Haim S, Warshaviak D, Fichman M, Noiman S (2004) G protein-coupled receptors: in silico, drug discovery in 3D. Proc Natl Acad Sci USA 101(31):11304–11309. https://doi.org/10.1073/pnas.0401862101 es_ES
dc.description.references Micheli F, Bonanomi G, Blaney FE, Braggio S, Capelli AM, Checchia A, Curcuruto O, Damiani F, Di Fabio R, Donati D, Gentile G, Gribble A, Hamprecht D, Tedesco G, Terreni S, Tarsi L, Lightfoot A, Stemp G, MacDonald G, Smith A, Pecoraro M, Petrone M, Perini O, Piner J, Rossi T, Worby A, Pilla M, Valerio E, Griffante C, Mugnaini M, Wood M, Scott C, Andreoli M, Lacroix L, Schwarz A, Gozzi A, Bifone A, Ashby Jr CR, Hagan JJ, Heidbreder C (2007) 1,2,4-Triazol-3-yl-thiopropyl-tetrahydrobenzazepines: a series of potent and selective dopamine D3 receptor antagonists. J Med Chem 50(21):5076–5089. https://doi.org/10.1021/jm0705612 es_ES
dc.description.references Párraga J, Cabedo N, Andujar S, Piqueras L, Moreno L, Galán A, Angelina E, Enriz RD, Ivorra MD, Sanz MJ, Cortes D (2013) 2,3,9- and 2,3,11-Trisubstituted tetrahydroprotoberberines as D2 dopaminergic ligands. Eur J Med Chem. 68:150-166. https://doi.org/10.1016/j.ejmech.2013.07.036 es_ES
dc.description.references Angelina E, Andujar S, Moreno L, Garibotto F, Párraga J, Peruchena N, Cabedo N, Villecco M, Cortes D, Enriz RD (2015) 3-chlorotyramine acting as ligand of the D2 dopamine receptor. Molecular modeling, synthesis and D2 receptor affinity. Molec Inform 34 (1):28-43. https://doi.org/10.1002/minf.201400093 es_ES
dc.description.references Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791 es_ES
dc.description.references Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the amber ff99SB protein force field. Proteins 78(8):1950–1958. https://doi.org/10.1002/prot.22711 es_ES
dc.description.references Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174 es_ES
dc.description.references Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Goetz AW, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2012) AMBER12. University of California, San Francisco es_ES
dc.description.references Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341. https://doi.org/10.1016/0021-9991(77)90098-5 es_ES
dc.description.references Izaguirre JA, Catarello DP, Wozniak JM, Skeel RD (2001) Langevin stabilization of molecular dynamics. J Chem Phys 114(5):2090–2098. https://doi.org/10.1063/1.1332996 es_ES
dc.description.references Essmann U, Perera L, Berkowitz M, Darden T, Lee H, Pedersen L (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593 es_ES
dc.description.references Hou T, Li N, Li Y, Wang W (2012) Characterization of domain-peptide interaction interface: prediction of SH3 domain-mediated protein-protein interaction network in yeast by generic structure-based models. J Proteome Res 11(5):2982–2995 es_ES
dc.description.references Gohlke H, Kiel C, Case DA (2003) Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol 330(4):891–913 es_ES
dc.description.references Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 revision D.01. Gaussian Inc, Wallingford es_ES
dc.description.references Bader RFW (1994) Atoms in molecules: a quantum theory. Clarendon, Oxford es_ES
dc.description.references Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592 es_ES
dc.description.references Case DA, Cheatham Iii TE, Darden T, Gohlke H, Luo R, Merz Jr KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688. https://doi.org/10.1002/jcc.20290 es_ES
dc.description.references Angel Guio JE, Santiago A, Rossi R, Migliore de Angel B, Barolo S, Andujar S, Hernandez V, Rosales C, Charris JE, Suarez-Roca H, Israel A, Ramirez MM, Ortega J, Cano NH, Enriz RD (2011) Synthesis and preliminary pharmacological evaluation of methoxilated indoles with possible dopaminergic central action. Lat Am J Pharm 30(10):1934 es_ES
dc.description.references Andujar SA, Tosso RD, Suvire FD, Angelina E, Peruchena N, Cabedo N, Cortes D, Enriz RD (2012) Searching the “biologically relevant” conformation of dopamine: a computational approach. J Chem Inf Model 52(1):99–112. https://doi.org/10.1021/ci2004225 es_ES
dc.description.references Sealfon SC, Chi L, Ebersole BJ, Rodic V, Zhang D, Ballesteros JA, Weinstein H (1995) Related contribution of specific helix 2 and 7 residues to conformational activation of the serotonin 5-HT2A receptor. J Biol Chem 270(28):16683–16688 es_ES
dc.description.references Trzaskowski B, Latek D, Yuan S, Ghoshdastider U, Debinski A, Filipek S (2012) Action of molecular switches in GPCRs - theoretical and experimental studies. Curr Med Chem 19(8):1090–1109. https://doi.org/10.2174/092986712799320556 es_ES
dc.description.references Tosso RD, Andujar SA, Gutierrez L, Angelina E, Rodriguez R, Nogueras M, Baldoni H, Suvire FD, Cobo J, Enriz RD (2013) Molecular modeling study of dihydrofolate reductase inhibitors. Molecular dynamics simulations, quantum mechanical calculations, and experimental corroboration. J Chem Inf Model 53(8):2018–2032 es_ES
dc.description.references Ortiz JE, Pigni NB, Andujar SA, Roitman G, Suvire FD, Enriz RD, Tapia A, Bastida J, Feresin GE (2016) Alkaloids from Hippeastrum Argentinum and their cholinesterase-inhibitory activities: an in vitro and in Silico study. J Nat Prod 79(5):1241–1248. https://doi.org/10.1021/acs.jnatprod.5b00785 es_ES
dc.description.references Luchi AM, Angelina EL, Andujar SA, Enriz RD, Peruchena NM (2016) Halogen bonding in biological context: a computational study of D2 dopamine receptor. J Phys Org Chem 29 (11):645-655. https://doi.org/10.1002/poc.3586 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem