- -

The resistance of sour orange to Citrus tristeza virus is mediated by both the salicylic acid and RNA silencing defence pathways

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The resistance of sour orange to Citrus tristeza virus is mediated by both the salicylic acid and RNA silencing defence pathways

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gomez-Muñoz, Neus es_ES
dc.contributor.author Velazquez, K. es_ES
dc.contributor.author Vives, M.C. es_ES
dc.contributor.author Ruiz-Ruiz, Susana es_ES
dc.contributor.author Pina, J.A. es_ES
dc.contributor.author FLORES PEDAUYE, RICARDO es_ES
dc.contributor.author Moreno, P. es_ES
dc.contributor.author Guerri, J. es_ES
dc.date.accessioned 2020-07-23T03:31:07Z
dc.date.available 2020-07-23T03:31:07Z
dc.date.issued 2017-12 es_ES
dc.identifier.issn 1464-6722 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148517
dc.description.abstract [EN] Citrus tristeza virus (CTV) induces in the field the decline and death of citrus varieties grafted on sour orange (SO) rootstock, which has forced the use of alternative decline-tolerant rootstocks in affected countries, despite the highly desirable agronomic features of the SO rootstock. Declining citrus plants display phloem necrosis below the bud union. In addition, SO is minimally susceptible to CTV compared with other citrus varieties, suggesting partial resistance of SO to CTV. Here, by silencing different citrus genes with a Citrus leaf blotch virus-based vector, we have examined the implication of the RNA silencing and salicylic acid (SA) defence pathways in the resistance of SO to CTV. Silencing of the genes RDR1, NPR1 and DCL2/DCL4, associated with these defence pathways, enhanced virus spread and accumulation in SO plants in comparison with non-silenced controls, whereas silencing of the genes NPR3/NPR4, associated with the hypersensitive response, produced a slight decrease in CTV accumulation and reduced stunting of SO grafted on CTV-infected rough lemon plants. We also found that the CTV RNA silencing suppressors p20 and p23 also suppress the SA signalling defence, with the suppressor activity being higher in the most virulent isolates. es_ES
dc.description.sponsorship This work was supported by grant AGL2012-32429, co-financed by ERDF (European Regional Development Fund) and the Spanish Ministerio de Economia y Competitividad (MINECO). We thank Dr W. O. Dawson for providing the GFP-tagged T36 isolate of CTV. Neus Gomez was the recipient of a doctoral fellowship from MINECO. Maria-Carmen Vives was the recipient of a contract from Instituto Valenciano de Investigaciones Agrarias (IVIA). es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Molecular Plant Pathology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Citrus decline es_ES
dc.subject CLBV es_ES
dc.subject Reverse genetics es_ES
dc.subject Salicylic acid signalling defence suppressor es_ES
dc.subject Viral vector es_ES
dc.title The resistance of sour orange to Citrus tristeza virus is mediated by both the salicylic acid and RNA silencing defence pathways es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/mpp.12488 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2012-32429/ES/DESARROLLO DE METODOS AVANZADOS PARA LA MEJORA SANITARIA Y GENETICA DE LOS CITRICOS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Gomez-Muñoz, N.; Velazquez, K.; Vives, M.; Ruiz-Ruiz, S.; Pina, J.; Flores Pedauye, R.; Moreno, P.... (2017). The resistance of sour orange to Citrus tristeza virus is mediated by both the salicylic acid and RNA silencing defence pathways. Molecular Plant Pathology. 18(9):1253-1266. https://doi.org/10.1111/mpp.12488 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/mpp.12488 es_ES
dc.description.upvformatpinicio 1253 es_ES
dc.description.upvformatpfin 1266 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 9 es_ES
dc.identifier.pmid 27588892 es_ES
dc.identifier.pmcid PMC6638288 es_ES
dc.relation.pasarela S\357588 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Institut Valencià d'Investigacions Agràries es_ES
dc.description.references Agüero, J., Ruiz-Ruiz, S., del Carmen Vives, M., Velázquez, K., Navarro, L., Peña, L., … Guerri, J. (2012). Development of Viral Vectors Based on Citrus leaf blotch virus to Express Foreign Proteins or Analyze Gene Function in Citrus Plants. Molecular Plant-Microbe Interactions®, 25(10), 1326-1337. doi:10.1094/mpmi-02-12-0048-r es_ES
dc.description.references Agüero, J., Vives, M. C., Velázquez, K., Ruiz-Ruiz, S., Juárez, J., Navarro, L., … Guerri, J. (2013). Citrus leaf blotch virusinvades meristematic regions inNicotiana benthamianaand citrus. Molecular Plant Pathology, 14(6), 610-616. doi:10.1111/mpp.12031 es_ES
dc.description.references Agüero, J., Vives, M. del C., Velázquez, K., Pina, J. A., Navarro, L., Moreno, P., & Guerri, J. (2014). Effectiveness of gene silencing induced by viral vectors based on Citrus leaf blotch virus is different in Nicotiana benthamiana and citrus plants. Virology, 460-461, 154-164. doi:10.1016/j.virol.2014.04.017 es_ES
dc.description.references Alamillo, J. M., Saénz, P., & García, J. A. (2006). Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco. The Plant Journal, 48(2), 217-227. doi:10.1111/j.1365-313x.2006.02861.x es_ES
dc.description.references Albiach-Marti, M. R., Grosser, J. W., Gowda, S., Mawassi, M., Satyanarayana, T., Garnsey, S. M., & Dawson, W. O. (2004). Citrus tristeza virus replicates and forms infectious virions in protoplasts of resistant citrus relatives. Molecular Breeding, 14(2), 117-128. doi:10.1023/b:molb.0000038000.51218.a7 es_ES
dc.description.references ALBIACH-MARTI, M. R., ROBERTSON, C., GOWDA, S., TATINENI, S., BELLIURE, B., GARNSEY, S. M., … DAWSON, W. O. (2010). The pathogenicity determinant ofCitrus tristeza viruscausing the seedling yellows syndrome maps at the 3â ²-terminal region of the viral genome. Molecular Plant Pathology, 11(1), 55-67. doi:10.1111/j.1364-3703.2009.00572.x es_ES
dc.description.references Ancillo, G., Gadea, J., Forment, J., Guerri, J., & Navarro, L. (2007). Class prediction of closely related plant varieties using gene expression profiling. Journal of Experimental Botany, 58(8), 1927-1933. doi:10.1093/jxb/erm054 es_ES
dc.description.references Andika, I. B., Kondo, H., & Tamada, T. (2005). Evidence That RNA Silencing-Mediated Resistance to Beet necrotic yellow vein virus Is Less Effective in Roots Than in Leaves. Molecular Plant-Microbe Interactions®, 18(3), 194-204. doi:10.1094/mpmi-18-0194 es_ES
dc.description.references Andika, I. B., Sun, L., Xiang, R., Li, J., & Chen, J. (2013). Root-Specific Role for Nicotiana benthamiana RDR6 in the Inhibition of Chinese wheat mosaic virus Accumulation at Higher Temperatures. Molecular Plant-Microbe Interactions®, 26(10), 1165-1175. doi:10.1094/mpmi-05-13-0137-r es_ES
dc.description.references Angel, C. A., & Schoelz, J. E. (2013). A Survey of Resistance to Tomato bushy stunt virus in the Genus Nicotiana Reveals That the Hypersensitive Response Is Triggered by One of Three Different Viral Proteins. Molecular Plant-Microbe Interactions®, 26(2), 240-248. doi:10.1094/mpmi-06-12-0157-r es_ES
dc.description.references Asins, M. J., Bernet, G. P., Ruiz, C., Cambra, M., Guerri, J., & Carbonell, E. A. (2003). QTL analysis of citrus tristeza virus-citradia interaction. Theoretical and Applied Genetics, 108(4), 603-611. doi:10.1007/s00122-003-1486-7 es_ES
dc.description.references Baebler, Š., Witek, K., Petek, M., Stare, K., Tušek-Žnidarič, M., Pompe-Novak, M., … Hennig, J. (2014). Salicylic acid is an indispensable component of the Ny-1 resistance-gene-mediated response against Potato virus Y infection in potato. Journal of Experimental Botany, 65(4), 1095-1109. doi:10.1093/jxb/ert447 es_ES
dc.description.references Baulcombe, D. (2004). RNA silencing in plants. Nature, 431(7006), 356-363. doi:10.1038/nature02874 es_ES
dc.description.references Burch-Smith, T. M., Anderson, J. C., Martin, G. B., & Dinesh-Kumar, S. P. (2004). Applications and advantages of virus-induced gene silencing for gene function studies in plants. The Plant Journal, 39(5), 734-746. doi:10.1111/j.1365-313x.2004.02158.x es_ES
dc.description.references Campos, L., Granell, P., Tárraga, S., López-Gresa, P., Conejero, V., Bellés, J. M., … Lisón, P. (2014). Salicylic acid and gentisic acid induce RNA silencing-related genes and plant resistance to RNA pathogens. Plant Physiology and Biochemistry, 77, 35-43. doi:10.1016/j.plaphy.2014.01.016 es_ES
dc.description.references Cervera, M., Navarro, A., Navarro, L., & Pena, L. (2008). Production of transgenic adult plants from clementine mandarin by enhancing cell competence for transformation and regeneration. Tree Physiology, 28(1), 55-66. doi:10.1093/treephys/28.1.55 es_ES
dc.description.references Comellas , M. 2009 es_ES
dc.description.references Csorba, T., Kontra, L., & Burgyán, J. (2015). viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology, 479-480, 85-103. doi:10.1016/j.virol.2015.02.028 es_ES
dc.description.references Dawson, W. O., Bar-Joseph, M., Garnsey, S. M., & Moreno, P. (2015). Citrus Tristeza Virus: Making an Ally from an Enemy. Annual Review of Phytopathology, 53(1), 137-155. doi:10.1146/annurev-phyto-080614-120012 es_ES
dc.description.references Dean, J. D., Goodwin, P. H., & Hsiang, T. (2005). Induction of glutathione S-transferase genes of Nicotiana benthamiana following infection by Colletotrichum destructivum and C. orbiculare and involvement of one in resistance. Journal of Experimental Botany, 56(416), 1525-1533. doi:10.1093/jxb/eri145 es_ES
dc.description.references Deleris, A., Gallego-Bartolome, J., Bao, J., Kasschau, K. D., Carrington, J. C., & Voinnet, O. (2006). Hierarchical Action and Inhibition of Plant Dicer-Like Proteins in Antiviral Defense. Science, 313(5783), 68-71. doi:10.1126/science.1128214 es_ES
dc.description.references Dong, X. (2004). NPR1, all things considered. Current Opinion in Plant Biology, 7(5), 547-552. doi:10.1016/j.pbi.2004.07.005 es_ES
dc.description.references FAGOAGA, C., PENSABENE-BELLAVIA, G., MORENO, P., NAVARRO, L., FLORES, R., & PEÑA, L. (2011). Ectopic expression of the p23 silencing suppressor of Citrus tristeza virus differentially modifies viral accumulation and tropism in two transgenic woody hosts. Molecular Plant Pathology, 12(9), 898-910. doi:10.1111/j.1364-3703.2011.00722.x es_ES
dc.description.references Folimonova, S. Y., Folimonov, A. S., Tatineni, S., & Dawson, W. O. (2008). Citrus Tristeza Virus: Survival at the Edge of the Movement Continuum. Journal of Virology, 82(13), 6546-6556. doi:10.1128/jvi.00515-08 es_ES
dc.description.references Fu, Z. Q., & Dong, X. (2013). Systemic Acquired Resistance: Turning Local Infection into Global Defense. Annual Review of Plant Biology, 64(1), 839-863. doi:10.1146/annurev-arplant-042811-105606 es_ES
dc.description.references Fu, Z. Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., … Dong, X. (2012). NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature, 486(7402), 228-232. doi:10.1038/nature11162 es_ES
dc.description.references Galipienso, L., Navarro, L., Ballester-Olmos, J. F., Pina, J. A., Moreno, P., & Guerri, J. (2000). Host range and symptomatology of a graft-transmissible pathogen causing bud union crease of citrus on trifoliate rootstocks. Plant Pathology, 49(2), 308-314. doi:10.1046/j.1365-3059.2000.00449.x es_ES
dc.description.references Gandía, M., Conesa, A., Ancillo, G., Gadea, J., Forment, J., Pallás, V., … Guerri, J. (2007). Transcriptional response of Citrus aurantifolia to infection by Citrus tristeza virus. Virology, 367(2), 298-306. doi:10.1016/j.virol.2007.05.025 es_ES
dc.description.references Garcia-Ruiz, H., Takeda, A., Chapman, E. J., Sullivan, C. M., Fahlgren, N., Brempelis, K. J., & Carrington, J. C. (2010). Arabidopsis RNA-Dependent RNA Polymerases and Dicer-Like Proteins in Antiviral Defense and Small Interfering RNA Biogenesis during Turnip Mosaic Virus Infection. The Plant Cell, 22(2), 481-496. doi:10.1105/tpc.109.073056 es_ES
dc.description.references Garnsey, S. M. (1977). Mechanical Transmission of Citrus Tristeza Virus. Phytopathology, 77(8), 965. doi:10.1094/phyto-67-965 es_ES
dc.description.references Harper, S. J., Cowell, S. J., Robertson, C. J., & Dawson, W. O. (2014). Differential tropism in roots and shoots infected by Citrus tristeza virus. Virology, 460-461, 91-99. doi:10.1016/j.virol.2014.04.035 es_ES
dc.description.references Ji, L.-H., & Ding, S.-W. (2001). The Suppressor of Transgene RNA Silencing Encoded by Cucumber mosaic virus Interferes with Salicylic Acid-Mediated Virus Resistance. Molecular Plant-Microbe Interactions®, 14(6), 715-724. doi:10.1094/mpmi.2001.14.6.715 es_ES
dc.description.references Hunter, L. J. R., Westwood, J. H., Heath, G., Macaulay, K., Smith, A. G., MacFarlane, S. A., … Carr, J. P. (2013). Regulation of RNA-Dependent RNA Polymerase 1 and Isochorismate Synthase Gene Expression in Arabidopsis. PLoS ONE, 8(6), e66530. doi:10.1371/journal.pone.0066530 es_ES
dc.description.references Jovel, J., Walker, M., & Sanfaçon, H. (2011). Salicylic Acid-Dependent Restriction of Tomato ringspot virus Spread in Tobacco Is Accompanied by a Hypersensitive Response, Local RNA Silencing, and Moderate Systemic Resistance. Molecular Plant-Microbe Interactions®, 24(6), 706-718. doi:10.1094/mpmi-09-10-0224 es_ES
dc.description.references Laino, P., Russo, M. P., Guardo, M., Reforgiato-Recupero, G., Valè, G., Cattivelli, L., & Moliterni, V. M. C. (2015). Rootstock-scion interaction affecting citrus response to CTV infection: a proteomic view. Physiologia Plantarum, 156(4), 444-467. doi:10.1111/ppl.12395 es_ES
dc.description.references Laird, J., McInally, C., Carr, C., Doddiah, S., Yates, G., Chrysanthou, E., … Milner, J. J. (2013). Identification of the domains of cauliflower mosaic virus protein P6 responsible for suppression of RNA silencing and salicylic acid signalling. Journal of General Virology, 94(12), 2777-2789. doi:10.1099/vir.0.057729-0 es_ES
dc.description.references Lee, R. F., & Keremane, M. L. (2013). Mild strain cross protection of tristeza: a review of research to protect against decline on sour orange in Florida. Frontiers in Microbiology, 4. doi:10.3389/fmicb.2013.00259 es_ES
dc.description.references Lee, W.-S., Fu, S.-F., Verchot-Lubicz, J., & Carr, J. P. (2011). Genetic modification of alternative respiration in Nicotiana benthamiana affects basal and salicylic acid-induced resistance to potato virus X. BMC Plant Biology, 11(1), 41. doi:10.1186/1471-2229-11-41 es_ES
dc.description.references Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262 es_ES
dc.description.references Love, A. J., Geri, C., Laird, J., Carr, C., Yun, B.-W., Loake, G. J., … Milner, J. J. (2012). Cauliflower mosaic virus Protein P6 Inhibits Signaling Responses to Salicylic Acid and Regulates Innate Immunity. PLoS ONE, 7(10), e47535. doi:10.1371/journal.pone.0047535 es_ES
dc.description.references Lu, R., Folimonov, A., Shintaku, M., Li, W.-X., Falk, B. W., Dawson, W. O., & Ding, S.-W. (2004). Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proceedings of the National Academy of Sciences, 101(44), 15742-15747. doi:10.1073/pnas.0404940101 es_ES
dc.description.references Mandadi, K. K., & Scholthof, K.-B. G. (2013). Plant Immune Responses Against Viruses: How Does a Virus Cause Disease? The Plant Cell, 25(5), 1489-1505. doi:10.1105/tpc.113.111658 es_ES
dc.description.references Meister, G. (2013). Argonaute proteins: functional insights and emerging roles. Nature Reviews Genetics, 14(7), 447-459. doi:10.1038/nrg3462 es_ES
dc.description.references Molnár, A., Csorba, T., Lakatos, L., Várallyay, E., Lacomme, C., & Burgyán, J. (2005). Plant Virus-Derived Small Interfering RNAs Originate Predominantly from Highly Structured Single-Stranded Viral RNAs. Journal of Virology, 79(12), 7812-7818. doi:10.1128/jvi.79.12.7812-7818.2005 es_ES
dc.description.references Moreno , P. Guerri , J. Ballester-Olmos , J.F. Martínez , M.E. 1991 Proceedings of the 11th Conference of the International Organization of Citrus Virologists es_ES
dc.description.references MORENO, P., GUERRI, J., BALLESTER-OLMOS, J. F., ALBIACH, R., & MARTÍNEZ, M. E. (1993). Separation and interference of strains from a citrus tristeza virus isolate evidenced by biological activity and double-stranded RNA (dsRNA) analysis. Plant Pathology, 42(1), 35-41. doi:10.1111/j.1365-3059.1993.tb01469.x es_ES
dc.description.references MORENO, P., AMBRÓS, S., ALBIACH-MARTÍ, M. R., GUERRI, J., & PEÑA, L. (2008). Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Molecular Plant Pathology, 9(2), 251-268. doi:10.1111/j.1364-3703.2007.00455.x es_ES
dc.description.references Pina , J.A. Moreno , P. Juárez , J. Guerri , J. Cambra , M. Gorris , M.T. Navarro , L. 2005 Proceedings of the 16th Conference of the International Organization of Citrus Virologists es_ES
dc.description.references Renovell, Á., Gago, S., Ruiz-Ruiz, S., Velázquez, K., Navarro, L., Moreno, P., … Guerri, J. (2010). Mapping the subgenomic RNA promoter of the Citrus leaf blotch virus coat protein gene by Agrobacterium-mediated inoculation. Virology, 406(2), 360-369. doi:10.1016/j.virol.2010.07.034 es_ES
dc.description.references Ruiz-Ruiz, S., Moreno, P., Guerri, J., & Ambrós, S. (2005). The complete nucleotide sequence of a severe stem pitting isolate of Citrus tristeza virus from Spain: comparison with isolates from different origins. Archives of Virology, 151(2), 387-398. doi:10.1007/s00705-005-0618-6 es_ES
dc.description.references Ruiz-Ruiz, S., Moreno, P., Guerri, J., & Ambrós, S. (2007). A real-time RT-PCR assay for detection and absolute quantitation of Citrus tristeza virus in different plant tissues. Journal of Virological Methods, 145(2), 96-105. doi:10.1016/j.jviromet.2007.05.011 es_ES
dc.description.references Ruiz-Ruiz, S., Navarro, B., Gisel, A., Peña, L., Navarro, L., Moreno, P., … Flores, R. (2011). Citrus tristeza virus infection induces the accumulation of viral small RNAs (21–24-nt) mapping preferentially at the 3′-terminal region of the genomic RNA and affects the host small RNA profile. Plant Molecular Biology, 75(6), 607-619. doi:10.1007/s11103-011-9754-4 es_ES
dc.description.references Ruiz-Ruiz, S., Soler, N., Sánchez-Navarro, J., Fagoaga, C., López, C., Navarro, L., … Flores, R. (2013). Citrus tristeza virus p23: Determinants for Nucleolar Localization and Their Influence on Suppression of RNA Silencing and Pathogenesis. Molecular Plant-Microbe Interactions®, 26(3), 306-318. doi:10.1094/mpmi-08-12-0201-r es_ES
dc.description.references Sambade, A., Ambrós, S., López, C., Ruiz-Ruiz, S., Hermoso de Mendoza, A., Flores, R., … Moreno, P. (2007). Preferential accumulation of severe variants of Citrus tristeza virus in plants co-inoculated with mild and severe variants. Archives of Virology, 152(6), 1115-1126. doi:10.1007/s00705-006-0932-7 es_ES
dc.description.references Satyanarayana, T., Bar-Joseph, M., Mawassi, M., Albiach-Martí, M. R., Ayllón, M. A., Gowda, S., … Dawson, W. O. (2001). Amplification of Citrus Tristeza Virus from a cDNA Clone and Infection of Citrus Trees. Virology, 280(1), 87-96. doi:10.1006/viro.2000.0759 es_ES
dc.description.references Senthil-Kumar, M., & Mysore, K. S. (2011). New dimensions for VIGS in plant functional genomics. Trends in Plant Science, 16(12), 656-665. doi:10.1016/j.tplants.2011.08.006 es_ES
dc.description.references Shi, B.-J., Palukaitis, P., & Symons, R. H. (2002). Differential Virulence by Strains of Cucumber mosaic virus is Mediated by the 2b Gene. Molecular Plant-Microbe Interactions®, 15(9), 947-955. doi:10.1094/mpmi.2002.15.9.947 es_ES
dc.description.references Soler, N., Fagoaga, C., López, C., Moreno, P., Navarro, L., Flores, R., & Peña, L. (2014). Symptoms induced by transgenic expression of p23 fromCitrus tristeza virusin phloem-associated cells of Mexican lime mimic virus infection without the aberrations accompanying constitutive expression. Molecular Plant Pathology, 16(4), 388-399. doi:10.1111/mpp.12188 es_ES
dc.description.references Spoel, S. H., Mou, Z., Tada, Y., Spivey, N. W., Genschik, P., & Dong, X. (2009). Proteasome-Mediated Turnover of the Transcription Coactivator NPR1 Plays Dual Roles in Regulating Plant Immunity. Cell, 137(5), 860-872. doi:10.1016/j.cell.2009.03.038 es_ES
dc.description.references Tatineni, S., Robertson, C. J., Garnsey, S. M., & Dawson, W. O. (2011). A plant virus evolved by acquiring multiple nonconserved genes to extend its host range. Proceedings of the National Academy of Sciences, 108(42), 17366-17371. doi:10.1073/pnas.1113227108 es_ES
dc.description.references Velázquez, K., Agüero, J., Vives, M. C., Aleza, P., Pina, J. A., Moreno, P., … Guerri, J. (2016). Precocious flowering of juvenile citrus induced by a viral vector based onCitrus leaf blotch virus: a new tool for genetics and breeding. Plant Biotechnology Journal, 14(10), 1976-1985. doi:10.1111/pbi.12555 es_ES
dc.description.references Vives, M. C., Rubio, L., L√≥pez, C., Navas-Castillo, J., Albiach-Mart√≠, M. R., Dawson, W. O., … Moreno, P. (1999). The complete genome sequence of the major component of a mild citrus tristeza virus isolate. Journal of General Virology, 80(3), 811-816. doi:10.1099/0022-1317-80-3-811 es_ES
dc.description.references Vives, M. C., Galipienso, L., Navarro, L., Moreno, P., & Guerri, J. (2001). The Nucleotide Sequence and Genomic Organization of Citrus Leaf Blotch Virus: Candidate Type Species for a New Virus Genus. Virology, 287(1), 225-233. doi:10.1006/viro.2001.1040 es_ES
dc.description.references Vives, M. C., Galipienso, L., Navarro, L., Moreno, P., & Guerri, J. (2002). Characterization of Two Kinds of Subgenomic RNAs Produced by Citrus Leaf Blotch Virus. Virology, 295(2), 328-336. doi:10.1006/viro.2001.1349 es_ES
dc.description.references VIVES, M. C., MARTÍN, S., AMBRÓS, S., RENOVELL, Á., NAVARRO, L., PINA, J. A., … GUERRI, J. (2008). Development of a full-genome cDNA clone ofCitrus leaf blotch virusand infection of citrus plants. Molecular Plant Pathology, 9(6), 787-797. doi:10.1111/j.1364-3703.2008.00501.x es_ES
dc.description.references Voinnet, O., Pinto, Y. M., & Baulcombe, D. C. (1999). Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants. Proceedings of the National Academy of Sciences, 96(24), 14147-14152. doi:10.1073/pnas.96.24.14147 es_ES
dc.description.references White, R. F. (1979). Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology, 99(2), 410-412. doi:10.1016/0042-6822(79)90019-9 es_ES
dc.description.references Wu, Y., Zhang, D., Chu, J. Y., Boyle, P., Wang, Y., Brindle, I. D., … Després, C. (2012). The Arabidopsis NPR1 Protein Is a Receptor for the Plant Defense Hormone Salicylic Acid. Cell Reports, 1(6), 639-647. doi:10.1016/j.celrep.2012.05.008 es_ES
dc.description.references Xie, Z., Fan, B., Chen, C., & Chen, Z. (2001). An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proceedings of the National Academy of Sciences, 98(11), 6516-6521. doi:10.1073/pnas.111440998 es_ES
dc.description.references Yang, S.-J., Carter, S. A., Cole, A. B., Cheng, N.-H., & Nelson, R. S. (2004). A natural variant of a host RNA-dependent RNA polymerase is associated with increased susceptibility to viruses by Nicotiana benthamiana. Proceedings of the National Academy of Sciences, 101(16), 6297-6302. doi:10.1073/pnas.0304346101 es_ES
dc.description.references Yu, D., Fan, B., MacFarlane, S. A., & Chen, Z. (2003). Analysis of the Involvement of an Inducible Arabidopsis RNA-Dependent RNA Polymerase in Antiviral Defense. Molecular Plant-Microbe Interactions®, 16(3), 206-216. doi:10.1094/mpmi.2003.16.3.206 es_ES
dc.description.references Zhang, Y., Cheng, Y. T., Qu, N., Zhao, Q., Bi, D., & Li, X. (2006). Negative regulation of defense responses in Arabidopsis by twoNPR1paralogs. The Plant Journal, 48(5), 647-656. doi:10.1111/j.1365-313x.2006.02903.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem