Mostrar el registro sencillo del ítem
dc.contributor.author | Gomez-Muñoz, Neus | es_ES |
dc.contributor.author | Velazquez, K. | es_ES |
dc.contributor.author | Vives, M.C. | es_ES |
dc.contributor.author | Ruiz-Ruiz, Susana | es_ES |
dc.contributor.author | Pina, J.A. | es_ES |
dc.contributor.author | FLORES PEDAUYE, RICARDO | es_ES |
dc.contributor.author | Moreno, P. | es_ES |
dc.contributor.author | Guerri, J. | es_ES |
dc.date.accessioned | 2020-07-23T03:31:07Z | |
dc.date.available | 2020-07-23T03:31:07Z | |
dc.date.issued | 2017-12 | es_ES |
dc.identifier.issn | 1464-6722 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/148517 | |
dc.description.abstract | [EN] Citrus tristeza virus (CTV) induces in the field the decline and death of citrus varieties grafted on sour orange (SO) rootstock, which has forced the use of alternative decline-tolerant rootstocks in affected countries, despite the highly desirable agronomic features of the SO rootstock. Declining citrus plants display phloem necrosis below the bud union. In addition, SO is minimally susceptible to CTV compared with other citrus varieties, suggesting partial resistance of SO to CTV. Here, by silencing different citrus genes with a Citrus leaf blotch virus-based vector, we have examined the implication of the RNA silencing and salicylic acid (SA) defence pathways in the resistance of SO to CTV. Silencing of the genes RDR1, NPR1 and DCL2/DCL4, associated with these defence pathways, enhanced virus spread and accumulation in SO plants in comparison with non-silenced controls, whereas silencing of the genes NPR3/NPR4, associated with the hypersensitive response, produced a slight decrease in CTV accumulation and reduced stunting of SO grafted on CTV-infected rough lemon plants. We also found that the CTV RNA silencing suppressors p20 and p23 also suppress the SA signalling defence, with the suppressor activity being higher in the most virulent isolates. | es_ES |
dc.description.sponsorship | This work was supported by grant AGL2012-32429, co-financed by ERDF (European Regional Development Fund) and the Spanish Ministerio de Economia y Competitividad (MINECO). We thank Dr W. O. Dawson for providing the GFP-tagged T36 isolate of CTV. Neus Gomez was the recipient of a doctoral fellowship from MINECO. Maria-Carmen Vives was the recipient of a contract from Instituto Valenciano de Investigaciones Agrarias (IVIA). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | Molecular Plant Pathology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Citrus decline | es_ES |
dc.subject | CLBV | es_ES |
dc.subject | Reverse genetics | es_ES |
dc.subject | Salicylic acid signalling defence suppressor | es_ES |
dc.subject | Viral vector | es_ES |
dc.title | The resistance of sour orange to Citrus tristeza virus is mediated by both the salicylic acid and RNA silencing defence pathways | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/mpp.12488 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2012-32429/ES/DESARROLLO DE METODOS AVANZADOS PARA LA MEJORA SANITARIA Y GENETICA DE LOS CITRICOS/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Gomez-Muñoz, N.; Velazquez, K.; Vives, M.; Ruiz-Ruiz, S.; Pina, J.; Flores Pedauye, R.; Moreno, P.... (2017). The resistance of sour orange to Citrus tristeza virus is mediated by both the salicylic acid and RNA silencing defence pathways. Molecular Plant Pathology. 18(9):1253-1266. https://doi.org/10.1111/mpp.12488 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1111/mpp.12488 | es_ES |
dc.description.upvformatpinicio | 1253 | es_ES |
dc.description.upvformatpfin | 1266 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.pmid | 27588892 | es_ES |
dc.identifier.pmcid | PMC6638288 | es_ES |
dc.relation.pasarela | S\357588 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Institut Valencià d'Investigacions Agràries | es_ES |
dc.description.references | Agüero, J., Ruiz-Ruiz, S., del Carmen Vives, M., Velázquez, K., Navarro, L., Peña, L., … Guerri, J. (2012). Development of Viral Vectors Based on Citrus leaf blotch virus to Express Foreign Proteins or Analyze Gene Function in Citrus Plants. Molecular Plant-Microbe Interactions®, 25(10), 1326-1337. doi:10.1094/mpmi-02-12-0048-r | es_ES |
dc.description.references | Agüero, J., Vives, M. C., Velázquez, K., Ruiz-Ruiz, S., Juárez, J., Navarro, L., … Guerri, J. (2013). Citrus leaf blotch virusinvades meristematic regions inNicotiana benthamianaand citrus. Molecular Plant Pathology, 14(6), 610-616. doi:10.1111/mpp.12031 | es_ES |
dc.description.references | Agüero, J., Vives, M. del C., Velázquez, K., Pina, J. A., Navarro, L., Moreno, P., & Guerri, J. (2014). Effectiveness of gene silencing induced by viral vectors based on Citrus leaf blotch virus is different in Nicotiana benthamiana and citrus plants. Virology, 460-461, 154-164. doi:10.1016/j.virol.2014.04.017 | es_ES |
dc.description.references | Alamillo, J. M., Saénz, P., & García, J. A. (2006). Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco. The Plant Journal, 48(2), 217-227. doi:10.1111/j.1365-313x.2006.02861.x | es_ES |
dc.description.references | Albiach-Marti, M. R., Grosser, J. W., Gowda, S., Mawassi, M., Satyanarayana, T., Garnsey, S. M., & Dawson, W. O. (2004). Citrus tristeza virus replicates and forms infectious virions in protoplasts of resistant citrus relatives. Molecular Breeding, 14(2), 117-128. doi:10.1023/b:molb.0000038000.51218.a7 | es_ES |
dc.description.references | ALBIACH-MARTI, M. R., ROBERTSON, C., GOWDA, S., TATINENI, S., BELLIURE, B., GARNSEY, S. M., … DAWSON, W. O. (2010). The pathogenicity determinant ofCitrus tristeza viruscausing the seedling yellows syndrome maps at the 3â ²-terminal region of the viral genome. Molecular Plant Pathology, 11(1), 55-67. doi:10.1111/j.1364-3703.2009.00572.x | es_ES |
dc.description.references | Ancillo, G., Gadea, J., Forment, J., Guerri, J., & Navarro, L. (2007). Class prediction of closely related plant varieties using gene expression profiling. Journal of Experimental Botany, 58(8), 1927-1933. doi:10.1093/jxb/erm054 | es_ES |
dc.description.references | Andika, I. B., Kondo, H., & Tamada, T. (2005). Evidence That RNA Silencing-Mediated Resistance to Beet necrotic yellow vein virus Is Less Effective in Roots Than in Leaves. Molecular Plant-Microbe Interactions®, 18(3), 194-204. doi:10.1094/mpmi-18-0194 | es_ES |
dc.description.references | Andika, I. B., Sun, L., Xiang, R., Li, J., & Chen, J. (2013). Root-Specific Role for Nicotiana benthamiana RDR6 in the Inhibition of Chinese wheat mosaic virus Accumulation at Higher Temperatures. Molecular Plant-Microbe Interactions®, 26(10), 1165-1175. doi:10.1094/mpmi-05-13-0137-r | es_ES |
dc.description.references | Angel, C. A., & Schoelz, J. E. (2013). A Survey of Resistance to Tomato bushy stunt virus in the Genus Nicotiana Reveals That the Hypersensitive Response Is Triggered by One of Three Different Viral Proteins. Molecular Plant-Microbe Interactions®, 26(2), 240-248. doi:10.1094/mpmi-06-12-0157-r | es_ES |
dc.description.references | Asins, M. J., Bernet, G. P., Ruiz, C., Cambra, M., Guerri, J., & Carbonell, E. A. (2003). QTL analysis of citrus tristeza virus-citradia interaction. Theoretical and Applied Genetics, 108(4), 603-611. doi:10.1007/s00122-003-1486-7 | es_ES |
dc.description.references | Baebler, Š., Witek, K., Petek, M., Stare, K., Tušek-Žnidarič, M., Pompe-Novak, M., … Hennig, J. (2014). Salicylic acid is an indispensable component of the Ny-1 resistance-gene-mediated response against Potato virus Y infection in potato. Journal of Experimental Botany, 65(4), 1095-1109. doi:10.1093/jxb/ert447 | es_ES |
dc.description.references | Baulcombe, D. (2004). RNA silencing in plants. Nature, 431(7006), 356-363. doi:10.1038/nature02874 | es_ES |
dc.description.references | Burch-Smith, T. M., Anderson, J. C., Martin, G. B., & Dinesh-Kumar, S. P. (2004). Applications and advantages of virus-induced gene silencing for gene function studies in plants. The Plant Journal, 39(5), 734-746. doi:10.1111/j.1365-313x.2004.02158.x | es_ES |
dc.description.references | Campos, L., Granell, P., Tárraga, S., López-Gresa, P., Conejero, V., Bellés, J. M., … Lisón, P. (2014). Salicylic acid and gentisic acid induce RNA silencing-related genes and plant resistance to RNA pathogens. Plant Physiology and Biochemistry, 77, 35-43. doi:10.1016/j.plaphy.2014.01.016 | es_ES |
dc.description.references | Cervera, M., Navarro, A., Navarro, L., & Pena, L. (2008). Production of transgenic adult plants from clementine mandarin by enhancing cell competence for transformation and regeneration. Tree Physiology, 28(1), 55-66. doi:10.1093/treephys/28.1.55 | es_ES |
dc.description.references | Comellas , M. 2009 | es_ES |
dc.description.references | Csorba, T., Kontra, L., & Burgyán, J. (2015). viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology, 479-480, 85-103. doi:10.1016/j.virol.2015.02.028 | es_ES |
dc.description.references | Dawson, W. O., Bar-Joseph, M., Garnsey, S. M., & Moreno, P. (2015). Citrus Tristeza Virus: Making an Ally from an Enemy. Annual Review of Phytopathology, 53(1), 137-155. doi:10.1146/annurev-phyto-080614-120012 | es_ES |
dc.description.references | Dean, J. D., Goodwin, P. H., & Hsiang, T. (2005). Induction of glutathione S-transferase genes of Nicotiana benthamiana following infection by Colletotrichum destructivum and C. orbiculare and involvement of one in resistance. Journal of Experimental Botany, 56(416), 1525-1533. doi:10.1093/jxb/eri145 | es_ES |
dc.description.references | Deleris, A., Gallego-Bartolome, J., Bao, J., Kasschau, K. D., Carrington, J. C., & Voinnet, O. (2006). Hierarchical Action and Inhibition of Plant Dicer-Like Proteins in Antiviral Defense. Science, 313(5783), 68-71. doi:10.1126/science.1128214 | es_ES |
dc.description.references | Dong, X. (2004). NPR1, all things considered. Current Opinion in Plant Biology, 7(5), 547-552. doi:10.1016/j.pbi.2004.07.005 | es_ES |
dc.description.references | FAGOAGA, C., PENSABENE-BELLAVIA, G., MORENO, P., NAVARRO, L., FLORES, R., & PEÑA, L. (2011). Ectopic expression of the p23 silencing suppressor of Citrus tristeza virus differentially modifies viral accumulation and tropism in two transgenic woody hosts. Molecular Plant Pathology, 12(9), 898-910. doi:10.1111/j.1364-3703.2011.00722.x | es_ES |
dc.description.references | Folimonova, S. Y., Folimonov, A. S., Tatineni, S., & Dawson, W. O. (2008). Citrus Tristeza Virus: Survival at the Edge of the Movement Continuum. Journal of Virology, 82(13), 6546-6556. doi:10.1128/jvi.00515-08 | es_ES |
dc.description.references | Fu, Z. Q., & Dong, X. (2013). Systemic Acquired Resistance: Turning Local Infection into Global Defense. Annual Review of Plant Biology, 64(1), 839-863. doi:10.1146/annurev-arplant-042811-105606 | es_ES |
dc.description.references | Fu, Z. Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., … Dong, X. (2012). NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature, 486(7402), 228-232. doi:10.1038/nature11162 | es_ES |
dc.description.references | Galipienso, L., Navarro, L., Ballester-Olmos, J. F., Pina, J. A., Moreno, P., & Guerri, J. (2000). Host range and symptomatology of a graft-transmissible pathogen causing bud union crease of citrus on trifoliate rootstocks. Plant Pathology, 49(2), 308-314. doi:10.1046/j.1365-3059.2000.00449.x | es_ES |
dc.description.references | Gandía, M., Conesa, A., Ancillo, G., Gadea, J., Forment, J., Pallás, V., … Guerri, J. (2007). Transcriptional response of Citrus aurantifolia to infection by Citrus tristeza virus. Virology, 367(2), 298-306. doi:10.1016/j.virol.2007.05.025 | es_ES |
dc.description.references | Garcia-Ruiz, H., Takeda, A., Chapman, E. J., Sullivan, C. M., Fahlgren, N., Brempelis, K. J., & Carrington, J. C. (2010). Arabidopsis RNA-Dependent RNA Polymerases and Dicer-Like Proteins in Antiviral Defense and Small Interfering RNA Biogenesis during Turnip Mosaic Virus Infection. The Plant Cell, 22(2), 481-496. doi:10.1105/tpc.109.073056 | es_ES |
dc.description.references | Garnsey, S. M. (1977). Mechanical Transmission of Citrus Tristeza Virus. Phytopathology, 77(8), 965. doi:10.1094/phyto-67-965 | es_ES |
dc.description.references | Harper, S. J., Cowell, S. J., Robertson, C. J., & Dawson, W. O. (2014). Differential tropism in roots and shoots infected by Citrus tristeza virus. Virology, 460-461, 91-99. doi:10.1016/j.virol.2014.04.035 | es_ES |
dc.description.references | Ji, L.-H., & Ding, S.-W. (2001). The Suppressor of Transgene RNA Silencing Encoded by Cucumber mosaic virus Interferes with Salicylic Acid-Mediated Virus Resistance. Molecular Plant-Microbe Interactions®, 14(6), 715-724. doi:10.1094/mpmi.2001.14.6.715 | es_ES |
dc.description.references | Hunter, L. J. R., Westwood, J. H., Heath, G., Macaulay, K., Smith, A. G., MacFarlane, S. A., … Carr, J. P. (2013). Regulation of RNA-Dependent RNA Polymerase 1 and Isochorismate Synthase Gene Expression in Arabidopsis. PLoS ONE, 8(6), e66530. doi:10.1371/journal.pone.0066530 | es_ES |
dc.description.references | Jovel, J., Walker, M., & Sanfaçon, H. (2011). Salicylic Acid-Dependent Restriction of Tomato ringspot virus Spread in Tobacco Is Accompanied by a Hypersensitive Response, Local RNA Silencing, and Moderate Systemic Resistance. Molecular Plant-Microbe Interactions®, 24(6), 706-718. doi:10.1094/mpmi-09-10-0224 | es_ES |
dc.description.references | Laino, P., Russo, M. P., Guardo, M., Reforgiato-Recupero, G., Valè, G., Cattivelli, L., & Moliterni, V. M. C. (2015). Rootstock-scion interaction affecting citrus response to CTV infection: a proteomic view. Physiologia Plantarum, 156(4), 444-467. doi:10.1111/ppl.12395 | es_ES |
dc.description.references | Laird, J., McInally, C., Carr, C., Doddiah, S., Yates, G., Chrysanthou, E., … Milner, J. J. (2013). Identification of the domains of cauliflower mosaic virus protein P6 responsible for suppression of RNA silencing and salicylic acid signalling. Journal of General Virology, 94(12), 2777-2789. doi:10.1099/vir.0.057729-0 | es_ES |
dc.description.references | Lee, R. F., & Keremane, M. L. (2013). Mild strain cross protection of tristeza: a review of research to protect against decline on sour orange in Florida. Frontiers in Microbiology, 4. doi:10.3389/fmicb.2013.00259 | es_ES |
dc.description.references | Lee, W.-S., Fu, S.-F., Verchot-Lubicz, J., & Carr, J. P. (2011). Genetic modification of alternative respiration in Nicotiana benthamiana affects basal and salicylic acid-induced resistance to potato virus X. BMC Plant Biology, 11(1), 41. doi:10.1186/1471-2229-11-41 | es_ES |
dc.description.references | Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262 | es_ES |
dc.description.references | Love, A. J., Geri, C., Laird, J., Carr, C., Yun, B.-W., Loake, G. J., … Milner, J. J. (2012). Cauliflower mosaic virus Protein P6 Inhibits Signaling Responses to Salicylic Acid and Regulates Innate Immunity. PLoS ONE, 7(10), e47535. doi:10.1371/journal.pone.0047535 | es_ES |
dc.description.references | Lu, R., Folimonov, A., Shintaku, M., Li, W.-X., Falk, B. W., Dawson, W. O., & Ding, S.-W. (2004). Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proceedings of the National Academy of Sciences, 101(44), 15742-15747. doi:10.1073/pnas.0404940101 | es_ES |
dc.description.references | Mandadi, K. K., & Scholthof, K.-B. G. (2013). Plant Immune Responses Against Viruses: How Does a Virus Cause Disease? The Plant Cell, 25(5), 1489-1505. doi:10.1105/tpc.113.111658 | es_ES |
dc.description.references | Meister, G. (2013). Argonaute proteins: functional insights and emerging roles. Nature Reviews Genetics, 14(7), 447-459. doi:10.1038/nrg3462 | es_ES |
dc.description.references | Molnár, A., Csorba, T., Lakatos, L., Várallyay, E., Lacomme, C., & Burgyán, J. (2005). Plant Virus-Derived Small Interfering RNAs Originate Predominantly from Highly Structured Single-Stranded Viral RNAs. Journal of Virology, 79(12), 7812-7818. doi:10.1128/jvi.79.12.7812-7818.2005 | es_ES |
dc.description.references | Moreno , P. Guerri , J. Ballester-Olmos , J.F. Martínez , M.E. 1991 Proceedings of the 11th Conference of the International Organization of Citrus Virologists | es_ES |
dc.description.references | MORENO, P., GUERRI, J., BALLESTER-OLMOS, J. F., ALBIACH, R., & MARTÍNEZ, M. E. (1993). Separation and interference of strains from a citrus tristeza virus isolate evidenced by biological activity and double-stranded RNA (dsRNA) analysis. Plant Pathology, 42(1), 35-41. doi:10.1111/j.1365-3059.1993.tb01469.x | es_ES |
dc.description.references | MORENO, P., AMBRÓS, S., ALBIACH-MARTÍ, M. R., GUERRI, J., & PEÑA, L. (2008). Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Molecular Plant Pathology, 9(2), 251-268. doi:10.1111/j.1364-3703.2007.00455.x | es_ES |
dc.description.references | Pina , J.A. Moreno , P. Juárez , J. Guerri , J. Cambra , M. Gorris , M.T. Navarro , L. 2005 Proceedings of the 16th Conference of the International Organization of Citrus Virologists | es_ES |
dc.description.references | Renovell, Á., Gago, S., Ruiz-Ruiz, S., Velázquez, K., Navarro, L., Moreno, P., … Guerri, J. (2010). Mapping the subgenomic RNA promoter of the Citrus leaf blotch virus coat protein gene by Agrobacterium-mediated inoculation. Virology, 406(2), 360-369. doi:10.1016/j.virol.2010.07.034 | es_ES |
dc.description.references | Ruiz-Ruiz, S., Moreno, P., Guerri, J., & Ambrós, S. (2005). The complete nucleotide sequence of a severe stem pitting isolate of Citrus tristeza virus from Spain: comparison with isolates from different origins. Archives of Virology, 151(2), 387-398. doi:10.1007/s00705-005-0618-6 | es_ES |
dc.description.references | Ruiz-Ruiz, S., Moreno, P., Guerri, J., & Ambrós, S. (2007). A real-time RT-PCR assay for detection and absolute quantitation of Citrus tristeza virus in different plant tissues. Journal of Virological Methods, 145(2), 96-105. doi:10.1016/j.jviromet.2007.05.011 | es_ES |
dc.description.references | Ruiz-Ruiz, S., Navarro, B., Gisel, A., Peña, L., Navarro, L., Moreno, P., … Flores, R. (2011). Citrus tristeza virus infection induces the accumulation of viral small RNAs (21–24-nt) mapping preferentially at the 3′-terminal region of the genomic RNA and affects the host small RNA profile. Plant Molecular Biology, 75(6), 607-619. doi:10.1007/s11103-011-9754-4 | es_ES |
dc.description.references | Ruiz-Ruiz, S., Soler, N., Sánchez-Navarro, J., Fagoaga, C., López, C., Navarro, L., … Flores, R. (2013). Citrus tristeza virus p23: Determinants for Nucleolar Localization and Their Influence on Suppression of RNA Silencing and Pathogenesis. Molecular Plant-Microbe Interactions®, 26(3), 306-318. doi:10.1094/mpmi-08-12-0201-r | es_ES |
dc.description.references | Sambade, A., Ambrós, S., López, C., Ruiz-Ruiz, S., Hermoso de Mendoza, A., Flores, R., … Moreno, P. (2007). Preferential accumulation of severe variants of Citrus tristeza virus in plants co-inoculated with mild and severe variants. Archives of Virology, 152(6), 1115-1126. doi:10.1007/s00705-006-0932-7 | es_ES |
dc.description.references | Satyanarayana, T., Bar-Joseph, M., Mawassi, M., Albiach-Martí, M. R., Ayllón, M. A., Gowda, S., … Dawson, W. O. (2001). Amplification of Citrus Tristeza Virus from a cDNA Clone and Infection of Citrus Trees. Virology, 280(1), 87-96. doi:10.1006/viro.2000.0759 | es_ES |
dc.description.references | Senthil-Kumar, M., & Mysore, K. S. (2011). New dimensions for VIGS in plant functional genomics. Trends in Plant Science, 16(12), 656-665. doi:10.1016/j.tplants.2011.08.006 | es_ES |
dc.description.references | Shi, B.-J., Palukaitis, P., & Symons, R. H. (2002). Differential Virulence by Strains of Cucumber mosaic virus is Mediated by the 2b Gene. Molecular Plant-Microbe Interactions®, 15(9), 947-955. doi:10.1094/mpmi.2002.15.9.947 | es_ES |
dc.description.references | Soler, N., Fagoaga, C., López, C., Moreno, P., Navarro, L., Flores, R., & Peña, L. (2014). Symptoms induced by transgenic expression of p23 fromCitrus tristeza virusin phloem-associated cells of Mexican lime mimic virus infection without the aberrations accompanying constitutive expression. Molecular Plant Pathology, 16(4), 388-399. doi:10.1111/mpp.12188 | es_ES |
dc.description.references | Spoel, S. H., Mou, Z., Tada, Y., Spivey, N. W., Genschik, P., & Dong, X. (2009). Proteasome-Mediated Turnover of the Transcription Coactivator NPR1 Plays Dual Roles in Regulating Plant Immunity. Cell, 137(5), 860-872. doi:10.1016/j.cell.2009.03.038 | es_ES |
dc.description.references | Tatineni, S., Robertson, C. J., Garnsey, S. M., & Dawson, W. O. (2011). A plant virus evolved by acquiring multiple nonconserved genes to extend its host range. Proceedings of the National Academy of Sciences, 108(42), 17366-17371. doi:10.1073/pnas.1113227108 | es_ES |
dc.description.references | Velázquez, K., Agüero, J., Vives, M. C., Aleza, P., Pina, J. A., Moreno, P., … Guerri, J. (2016). Precocious flowering of juvenile citrus induced by a viral vector based onCitrus leaf blotch virus: a new tool for genetics and breeding. Plant Biotechnology Journal, 14(10), 1976-1985. doi:10.1111/pbi.12555 | es_ES |
dc.description.references | Vives, M. C., Rubio, L., L√≥pez, C., Navas-Castillo, J., Albiach-Mart√≠, M. R., Dawson, W. O., … Moreno, P. (1999). The complete genome sequence of the major component of a mild citrus tristeza virus isolate. Journal of General Virology, 80(3), 811-816. doi:10.1099/0022-1317-80-3-811 | es_ES |
dc.description.references | Vives, M. C., Galipienso, L., Navarro, L., Moreno, P., & Guerri, J. (2001). The Nucleotide Sequence and Genomic Organization of Citrus Leaf Blotch Virus: Candidate Type Species for a New Virus Genus. Virology, 287(1), 225-233. doi:10.1006/viro.2001.1040 | es_ES |
dc.description.references | Vives, M. C., Galipienso, L., Navarro, L., Moreno, P., & Guerri, J. (2002). Characterization of Two Kinds of Subgenomic RNAs Produced by Citrus Leaf Blotch Virus. Virology, 295(2), 328-336. doi:10.1006/viro.2001.1349 | es_ES |
dc.description.references | VIVES, M. C., MARTÍN, S., AMBRÓS, S., RENOVELL, Á., NAVARRO, L., PINA, J. A., … GUERRI, J. (2008). Development of a full-genome cDNA clone ofCitrus leaf blotch virusand infection of citrus plants. Molecular Plant Pathology, 9(6), 787-797. doi:10.1111/j.1364-3703.2008.00501.x | es_ES |
dc.description.references | Voinnet, O., Pinto, Y. M., & Baulcombe, D. C. (1999). Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants. Proceedings of the National Academy of Sciences, 96(24), 14147-14152. doi:10.1073/pnas.96.24.14147 | es_ES |
dc.description.references | White, R. F. (1979). Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology, 99(2), 410-412. doi:10.1016/0042-6822(79)90019-9 | es_ES |
dc.description.references | Wu, Y., Zhang, D., Chu, J. Y., Boyle, P., Wang, Y., Brindle, I. D., … Després, C. (2012). The Arabidopsis NPR1 Protein Is a Receptor for the Plant Defense Hormone Salicylic Acid. Cell Reports, 1(6), 639-647. doi:10.1016/j.celrep.2012.05.008 | es_ES |
dc.description.references | Xie, Z., Fan, B., Chen, C., & Chen, Z. (2001). An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proceedings of the National Academy of Sciences, 98(11), 6516-6521. doi:10.1073/pnas.111440998 | es_ES |
dc.description.references | Yang, S.-J., Carter, S. A., Cole, A. B., Cheng, N.-H., & Nelson, R. S. (2004). A natural variant of a host RNA-dependent RNA polymerase is associated with increased susceptibility to viruses by Nicotiana benthamiana. Proceedings of the National Academy of Sciences, 101(16), 6297-6302. doi:10.1073/pnas.0304346101 | es_ES |
dc.description.references | Yu, D., Fan, B., MacFarlane, S. A., & Chen, Z. (2003). Analysis of the Involvement of an Inducible Arabidopsis RNA-Dependent RNA Polymerase in Antiviral Defense. Molecular Plant-Microbe Interactions®, 16(3), 206-216. doi:10.1094/mpmi.2003.16.3.206 | es_ES |
dc.description.references | Zhang, Y., Cheng, Y. T., Qu, N., Zhao, Q., Bi, D., & Li, X. (2006). Negative regulation of defense responses in Arabidopsis by twoNPR1paralogs. The Plant Journal, 48(5), 647-656. doi:10.1111/j.1365-313x.2006.02903.x | es_ES |