dc.contributor.author |
El Sayed, Sameh
|
es_ES |
dc.contributor.author |
Licchelli, Maurizio
|
es_ES |
dc.contributor.author |
Martínez-Máñez, Ramón
|
es_ES |
dc.contributor.author |
Sancenón Galarza, Félix
|
es_ES |
dc.date.accessioned |
2020-07-23T03:31:19Z |
|
dc.date.available |
2020-07-23T03:31:19Z |
|
dc.date.issued |
2017-10-18 |
es_ES |
dc.identifier.issn |
1861-4728 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/148521 |
|
dc.description.abstract |
[EN] The development of easy and affordable methods for the detection of cyanide is of great significance due to the high toxicity of this anion and the potential risks associated with its pollution. Herein, optical detection of cyanide in water has been achieved by using a hybrid organic-inorganic nanomaterial. Mesoporous silica nanoparticles were loaded with [Ru(bipy)(3)](2+), functionalized with macrocyclic nickel(II) complex subunits, and capped with a sterically hindering anion (hexametaphosphate). Cyanide selectively induces demetallation of nickel(II) complexes and the removal of capping anions from the silica surface, allowing the release of the dye and the consequent increase in fluorescence intensity. The response of the capped nanoparticles in aqueous solution is highly selective and sensitive towards cyanide with a limit of detection of 2 mu M. |
es_ES |
dc.description.sponsorship |
We thank the Spanish Government (projects MAT2015-64139-C4-1-R and AGL2015-70235-C2-2-R (MINECO/FEDER, UE)) and the Generalitat Valenciana (project PROMETEOII/2014/047) for support. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
John Wiley & Sons |
es_ES |
dc.relation.ispartof |
Chemistry - An Asian Journal |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Cyanides |
es_ES |
dc.subject |
Hybrid materials |
es_ES |
dc.subject |
Macrocyclic ligands |
es_ES |
dc.subject |
Mesoporous silica nanoparticles |
es_ES |
dc.subject |
Optical detection |
es_ES |
dc.subject.classification |
QUIMICA ORGANICA |
es_ES |
dc.subject.classification |
QUIMICA INORGANICA |
es_ES |
dc.title |
Capped Mesoporous Silica Nanoparticles for the Selective and Sensitive Detection of Cyanide |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1002/asia.201701130 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//AGL2015-70235-C2-2-R/ES/DESARROLLO DE SISTEMAS HIBRIDOS CON OPTIMIZACION DEL ANCLADO DE BIOMOLECULAS Y DISEÑADOS CON PROPIEDADES DE ENCAPSULACION Y LIBERACION CONTROLADA MEJORADAS/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Química - Departament de Química |
es_ES |
dc.description.bibliographicCitation |
El Sayed, S.; Licchelli, M.; Martínez-Máñez, R.; Sancenón Galarza, F. (2017). Capped Mesoporous Silica Nanoparticles for the Selective and Sensitive Detection of Cyanide. Chemistry - An Asian Journal. 12(20):2670-2674. https://doi.org/10.1002/asia.201701130 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1002/asia.201701130 |
es_ES |
dc.description.upvformatpinicio |
2670 |
es_ES |
dc.description.upvformatpfin |
2674 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
12 |
es_ES |
dc.description.issue |
20 |
es_ES |
dc.identifier.pmid |
28941199 |
es_ES |
dc.relation.pasarela |
S\350014 |
es_ES |
dc.contributor.funder |
Generalitat Valenciana |
es_ES |
dc.contributor.funder |
European Regional Development Fund |
es_ES |
dc.contributor.funder |
Ministerio de Economía y Competitividad |
es_ES |
dc.description.references |
Tylleskar, T., Howlett, W. P., Rwiza, H. T., Aquilonius, S. M., Stalberg, E., Linden, B., … Rosling, H. (1993). Konzo: a distinct disease entity with selective upper motor neuron damage. Journal of Neurology, Neurosurgery & Psychiatry, 56(6), 638-643. doi:10.1136/jnnp.56.6.638 |
es_ES |
dc.description.references |
Johnson, J. D., Meisenheimer, T. L., & Isom, G. E. (1986). Cyanide-induced neurotoxicity: Role of neuronal calcium. Toxicology and Applied Pharmacology, 84(3), 464-469. doi:10.1016/0041-008x(86)90251-6 |
es_ES |
dc.description.references |
Cyanide Toxicity 1991 |
es_ES |
dc.description.references |
Jiang, J., Wang, X., Zhou, W., Gao, H., & Wu, J. (2002). Extraction of gold from alkaline cyanide solution by the tetradecyldimethylbenzylammonium chloride/tri-n-butyl phosphate/n-heptane system based on a microemulsion mechanism. Physical Chemistry Chemical Physics, 4(18), 4489-4494. doi:10.1039/b203467k |
es_ES |
dc.description.references |
Guidelines for drinking-water quality 2011 |
es_ES |
dc.description.references |
Standard Methods for the Examination of Water and Wastewater 22nd ed 2012 |
es_ES |
dc.description.references |
Suzuki, T., Hioki, A., & Kurahashi, M. (2003). Development of a method for estimating an accurate equivalence point in nickel titration of cyanide ions. Analytica Chimica Acta, 476(1), 159-165. doi:10.1016/s0003-2670(02)01362-4 |
es_ES |
dc.description.references |
Safavi, A., Maleki, N., & Shahbaazi, H. . (2004). Indirect determination of cyanide ion and hydrogen cyanide by adsorptive stripping voltammetry at a mercury electrode. Analytica Chimica Acta, 503(2), 213-221. doi:10.1016/j.aca.2003.10.032 |
es_ES |
dc.description.references |
Wang, F., Wang, L., Chen, X., & Yoon, J. (2014). Recent progress in the development of fluorometric and colorimetric chemosensors for detection of cyanide ions. Chemical Society Reviews, 43(13), 4312. doi:10.1039/c4cs00008k |
es_ES |
dc.description.references |
Lin, W.-C., Fang, S.-K., Hu, J.-W., Tsai, H.-Y., & Chen, K.-Y. (2014). Ratiometric Fluorescent/Colorimetric Cyanide-Selective Sensor Based on Excited-State Intramolecular Charge Transfer−Excited-State Intramolecular Proton Transfer Switching. Analytical Chemistry, 86(10), 4648-4652. doi:10.1021/ac501024d |
es_ES |
dc.description.references |
Wang, L., Zhu, L., & Cao, D. (2015). A colorimetric probe based on diketopyrrolopyrrole and tert-butyl cyanoacetate for cyanide detection. New Journal of Chemistry, 39(9), 7211-7218. doi:10.1039/c5nj01214g |
es_ES |
dc.description.references |
Singh, P., Mittal, L. S., Kumar, S., Bhargava, G., & Kumar, S. (2014). Perylene Diimide Appended with 8-Hydroxyquinoline for Ratiometric Detection of Cu2+ Ions and Metal Displacement Driven «Turn on» Cyanide Sensing. Journal of Fluorescence, 24(3), 909-915. doi:10.1007/s10895-014-1371-6 |
es_ES |
dc.description.references |
Hong, K.-I., Yoon, H., & Jang, W.-D. (2015). A triazole-bearing picket fence type nickel porphyrin as a cyanide selective allosteric host. Chemical Communications, 51(35), 7486-7488. doi:10.1039/c5cc00809c |
es_ES |
dc.description.references |
Batista, R. M. F., Oliveira, E., Costa, S. P. G., Lodeiro, C., & Raposo, M. M. M. (2013). Cyanide and fluoride colorimetric sensing by novel imidazo-anthraquinones functionalised with indole and carbazole. Supramolecular Chemistry, 26(2), 71-80. doi:10.1080/10610278.2013.824082 |
es_ES |
dc.description.references |
Gale, P. A., & Caltagirone, C. (2015). Anion sensing by small molecules and molecular ensembles. Chemical Society Reviews, 44(13), 4212-4227. doi:10.1039/c4cs00179f |
es_ES |
dc.description.references |
Shiraishi, Y., Nakamura, M., Kogure, T., & Hirai, T. (2016). Off–on fluorometric detection of cyanide anions in an aqueous mixture by an indane-based receptor. New Journal of Chemistry, 40(2), 1237-1243. doi:10.1039/c5nj02873f |
es_ES |
dc.description.references |
Bejoymohandas, K. S., Kumar, A., Sreenadh, S., Varathan, E., Varughese, S., Subramanian, V., & Reddy, M. L. P. (2016). A Highly Selective Chemosensor for Cyanide Derived from a Formyl-Functionalized Phosphorescent Iridium(III) Complex. Inorganic Chemistry, 55(7), 3448-3461. doi:10.1021/acs.inorgchem.5b02885 |
es_ES |
dc.description.references |
Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053 |
es_ES |
dc.description.references |
El Sayed, S., Pascual, L., Licchelli, M., Martínez-Máñez, R., Gil, S., Costero, A. M., & Sancenón, F. (2016). Chromogenic Detection of Aqueous Formaldehyde Using Functionalized Silica Nanoparticles. ACS Applied Materials & Interfaces, 8(23), 14318-14322. doi:10.1021/acsami.6b03224 |
es_ES |
dc.description.references |
Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469 |
es_ES |
dc.description.references |
Ambrogio, M. W., Thomas, C. R., Zhao, Y.-L., Zink, J. I., & Stoddart, J. F. (2011). Mechanized Silica Nanoparticles: A New Frontier in Theranostic Nanomedicine. Accounts of Chemical Research, 44(10), 903-913. doi:10.1021/ar200018x |
es_ES |
dc.description.references |
Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456 |
es_ES |
dc.description.references |
Pascual, L., Sayed, S. E., Martínez-Máñez, R., Costero, A. M., Gil, S., Gaviña, P., & Sancenón, F. (2016). Acetylcholinesterase-Capped Mesoporous Silica Nanoparticles That Open in the Presence of Diisopropylfluorophosphate (a Sarin or Soman Simulant). Organic Letters, 18(21), 5548-5551. doi:10.1021/acs.orglett.6b02793 |
es_ES |
dc.description.references |
El Sayed, S., Giménez, C., Aznar, E., Martínez-Máñez, R., Sancenón, F., & Licchelli, M. (2015). Highly selective and sensitive detection of glutathione using mesoporous silica nanoparticles capped with disulfide-containing oligo(ethylene glycol) chains. Organic & Biomolecular Chemistry, 13(4), 1017-1021. doi:10.1039/c4ob02083a |
es_ES |
dc.description.references |
El Sayed, S., Milani, M., Licchelli, M., Martínez-Máñez, R., & Sancenón, F. (2015). Hexametaphosphate-Capped Silica Mesoporous Nanoparticles Containing CuIIComplexes for the Selective and Sensitive Optical Detection of Hydrogen Sulfide in Water. Chemistry - A European Journal, 21(19), 7002-7006. doi:10.1002/chem.201500360 |
es_ES |
dc.description.references |
Attia, S., Shames, A., Zilbermann, I., Goobes, G., Maimon, E., & Meyerstein, D. (2014). Covalent binding of a nickel macrocyclic complex to a silica support: towards an electron exchange column. Dalton Trans., 43(1), 103-110. doi:10.1039/c3dt51962g |
es_ES |
dc.description.references |
Fabbrizzi, L., Licchelli, M., Manotti Lanfredi, A. M., Vassalli, O., & Ugozzoli, F. (1996). Template Synthesis of a Tetraaza Macrocycle Which Involves Benzaldehyde Rather Than Formaldehyde as a Building Block. Isolation and Structure Determination of the Open-Chain Schiff Base Intermediate Complex. Inorganic Chemistry, 35(6), 1582-1589. doi:10.1021/ic950841k |
es_ES |
dc.description.references |
Boiocchi, M., Licchelli, M., Milani, M., Poggi, A., & Sacchi, D. (2014). Oxo-Anion Recognition by Mono- and Bisurea Pendant-Arm Macrocyclic Complexes. Inorganic Chemistry, 54(1), 47-58. doi:10.1021/ic501527k |
es_ES |
dc.description.references |
Fabbrizzi, L., Licchelli, M., Mosca, L., & Poggi, A. (2010). Template synthesis of azacyclam metal complexes using primary amides as locking fragments. Coordination Chemistry Reviews, 254(15-16), 1628-1636. doi:10.1016/j.ccr.2009.12.002 |
es_ES |
dc.description.references |
Hinz, F. P., & Margerum, D. W. (1974). Ligand solvation and the macrocyclic effect. Nickel(II)-tetramine complexes. Inorganic Chemistry, 13(12), 2941-2949. doi:10.1021/ic50142a032 |
es_ES |
dc.description.references |
El Sayed, S., Milani, M., Milanese, C., Licchelli, M., Martínez-Máñez, R., & Sancenón, F. (2016). Anions as Triggers in Controlled Release Protocols from Mesoporous Silica Nanoparticles Functionalized with Macrocyclic Copper(II) Complexes. Chemistry - A European Journal, 22(39), 13935-13945. doi:10.1002/chem.201601024 |
es_ES |
dc.description.references |
Wang, L., Zhu, L., Li, L., & Cao, D. (2016). Tetraphenylethene-functionalized diketopyrrolopyrrole solid state emissive molecules: enhanced emission in the solid state and as a fluorescent probe for cyanide detection. RSC Advances, 6(60), 55182-55193. doi:10.1039/c6ra10073b |
es_ES |
dc.description.references |
Wang, L., Li, L., & Cao, D. (2016). Dual binding site assisted chromogenic and fluorogenic discrimination of fluoride and cyanide by boryl functionalized BODIPY. Sensors and Actuators B: Chemical, 228, 347-359. doi:10.1016/j.snb.2016.01.044 |
es_ES |
dc.description.references |
Wang, L., Li, L., & Cao, D. (2017). A BODIPY-based dye with red fluorescence in solid state and used as a fluorescent and colorimetric probe for highly selective detection of cyanide. Sensors and Actuators B: Chemical, 239, 1307-1317. doi:10.1016/j.snb.2016.09.112 |
es_ES |
dc.description.references |
Wang, L., Li, L., & Cao, D. (2017). Synthesis, photoluminescence, chromogenic and fluorogenic discrimination of fluoride and cyanide based on a triphenylamine-tri(2-formyl BODIPY) conjugate. Sensors and Actuators B: Chemical, 241, 1224-1234. doi:10.1016/j.snb.2016.10.007 |
es_ES |