- -

Capped Mesoporous Silica Nanoparticles for the Selective and Sensitive Detection of Cyanide

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Capped Mesoporous Silica Nanoparticles for the Selective and Sensitive Detection of Cyanide

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author El Sayed, Sameh es_ES
dc.contributor.author Licchelli, Maurizio es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.date.accessioned 2020-07-23T03:31:19Z
dc.date.available 2020-07-23T03:31:19Z
dc.date.issued 2017-10-18 es_ES
dc.identifier.issn 1861-4728 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148521
dc.description.abstract [EN] The development of easy and affordable methods for the detection of cyanide is of great significance due to the high toxicity of this anion and the potential risks associated with its pollution. Herein, optical detection of cyanide in water has been achieved by using a hybrid organic-inorganic nanomaterial. Mesoporous silica nanoparticles were loaded with [Ru(bipy)(3)](2+), functionalized with macrocyclic nickel(II) complex subunits, and capped with a sterically hindering anion (hexametaphosphate). Cyanide selectively induces demetallation of nickel(II) complexes and the removal of capping anions from the silica surface, allowing the release of the dye and the consequent increase in fluorescence intensity. The response of the capped nanoparticles in aqueous solution is highly selective and sensitive towards cyanide with a limit of detection of 2 mu M. es_ES
dc.description.sponsorship We thank the Spanish Government (projects MAT2015-64139-C4-1-R and AGL2015-70235-C2-2-R (MINECO/FEDER, UE)) and the Generalitat Valenciana (project PROMETEOII/2014/047) for support. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Chemistry - An Asian Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cyanides es_ES
dc.subject Hybrid materials es_ES
dc.subject Macrocyclic ligands es_ES
dc.subject Mesoporous silica nanoparticles es_ES
dc.subject Optical detection es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.title Capped Mesoporous Silica Nanoparticles for the Selective and Sensitive Detection of Cyanide es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/asia.201701130 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-70235-C2-2-R/ES/DESARROLLO DE SISTEMAS HIBRIDOS CON OPTIMIZACION DEL ANCLADO DE BIOMOLECULAS Y DISEÑADOS CON PROPIEDADES DE ENCAPSULACION Y LIBERACION CONTROLADA MEJORADAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation El Sayed, S.; Licchelli, M.; Martínez-Máñez, R.; Sancenón Galarza, F. (2017). Capped Mesoporous Silica Nanoparticles for the Selective and Sensitive Detection of Cyanide. Chemistry - An Asian Journal. 12(20):2670-2674. https://doi.org/10.1002/asia.201701130 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/asia.201701130 es_ES
dc.description.upvformatpinicio 2670 es_ES
dc.description.upvformatpfin 2674 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 20 es_ES
dc.identifier.pmid 28941199 es_ES
dc.relation.pasarela S\350014 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Tylleskar, T., Howlett, W. P., Rwiza, H. T., Aquilonius, S. M., Stalberg, E., Linden, B., … Rosling, H. (1993). Konzo: a distinct disease entity with selective upper motor neuron damage. Journal of Neurology, Neurosurgery & Psychiatry, 56(6), 638-643. doi:10.1136/jnnp.56.6.638 es_ES
dc.description.references Johnson, J. D., Meisenheimer, T. L., & Isom, G. E. (1986). Cyanide-induced neurotoxicity: Role of neuronal calcium. Toxicology and Applied Pharmacology, 84(3), 464-469. doi:10.1016/0041-008x(86)90251-6 es_ES
dc.description.references Cyanide Toxicity 1991 es_ES
dc.description.references Jiang, J., Wang, X., Zhou, W., Gao, H., & Wu, J. (2002). Extraction of gold from alkaline cyanide solution by the tetradecyldimethylbenzylammonium chloride/tri-n-butyl phosphate/n-heptane system based on a microemulsion mechanism. Physical Chemistry Chemical Physics, 4(18), 4489-4494. doi:10.1039/b203467k es_ES
dc.description.references Guidelines for drinking-water quality 2011 es_ES
dc.description.references Standard Methods for the Examination of Water and Wastewater 22nd ed 2012 es_ES
dc.description.references Suzuki, T., Hioki, A., & Kurahashi, M. (2003). Development of a method for estimating an accurate equivalence point in nickel titration of cyanide ions. Analytica Chimica Acta, 476(1), 159-165. doi:10.1016/s0003-2670(02)01362-4 es_ES
dc.description.references Safavi, A., Maleki, N., & Shahbaazi, H. . (2004). Indirect determination of cyanide ion and hydrogen cyanide by adsorptive stripping voltammetry at a mercury electrode. Analytica Chimica Acta, 503(2), 213-221. doi:10.1016/j.aca.2003.10.032 es_ES
dc.description.references Wang, F., Wang, L., Chen, X., & Yoon, J. (2014). Recent progress in the development of fluorometric and colorimetric chemosensors for detection of cyanide ions. Chemical Society Reviews, 43(13), 4312. doi:10.1039/c4cs00008k es_ES
dc.description.references Lin, W.-C., Fang, S.-K., Hu, J.-W., Tsai, H.-Y., & Chen, K.-Y. (2014). Ratiometric Fluorescent/Colorimetric Cyanide-Selective Sensor Based on Excited-State Intramolecular Charge Transfer−Excited-State Intramolecular Proton Transfer Switching. Analytical Chemistry, 86(10), 4648-4652. doi:10.1021/ac501024d es_ES
dc.description.references Wang, L., Zhu, L., & Cao, D. (2015). A colorimetric probe based on diketopyrrolopyrrole and tert-butyl cyanoacetate for cyanide detection. New Journal of Chemistry, 39(9), 7211-7218. doi:10.1039/c5nj01214g es_ES
dc.description.references Singh, P., Mittal, L. S., Kumar, S., Bhargava, G., & Kumar, S. (2014). Perylene Diimide Appended with 8-Hydroxyquinoline for Ratiometric Detection of Cu2+ Ions and Metal Displacement Driven «Turn on» Cyanide Sensing. Journal of Fluorescence, 24(3), 909-915. doi:10.1007/s10895-014-1371-6 es_ES
dc.description.references Hong, K.-I., Yoon, H., & Jang, W.-D. (2015). A triazole-bearing picket fence type nickel porphyrin as a cyanide selective allosteric host. Chemical Communications, 51(35), 7486-7488. doi:10.1039/c5cc00809c es_ES
dc.description.references Batista, R. M. F., Oliveira, E., Costa, S. P. G., Lodeiro, C., & Raposo, M. M. M. (2013). Cyanide and fluoride colorimetric sensing by novel imidazo-anthraquinones functionalised with indole and carbazole. Supramolecular Chemistry, 26(2), 71-80. doi:10.1080/10610278.2013.824082 es_ES
dc.description.references Gale, P. A., & Caltagirone, C. (2015). Anion sensing by small molecules and molecular ensembles. Chemical Society Reviews, 44(13), 4212-4227. doi:10.1039/c4cs00179f es_ES
dc.description.references Shiraishi, Y., Nakamura, M., Kogure, T., & Hirai, T. (2016). Off–on fluorometric detection of cyanide anions in an aqueous mixture by an indane-based receptor. New Journal of Chemistry, 40(2), 1237-1243. doi:10.1039/c5nj02873f es_ES
dc.description.references Bejoymohandas, K. S., Kumar, A., Sreenadh, S., Varathan, E., Varughese, S., Subramanian, V., & Reddy, M. L. P. (2016). A Highly Selective Chemosensor for Cyanide Derived from a Formyl-Functionalized Phosphorescent Iridium(III) Complex. Inorganic Chemistry, 55(7), 3448-3461. doi:10.1021/acs.inorgchem.5b02885 es_ES
dc.description.references Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053 es_ES
dc.description.references El Sayed, S., Pascual, L., Licchelli, M., Martínez-Máñez, R., Gil, S., Costero, A. M., & Sancenón, F. (2016). Chromogenic Detection of Aqueous Formaldehyde Using Functionalized Silica Nanoparticles. ACS Applied Materials & Interfaces, 8(23), 14318-14322. doi:10.1021/acsami.6b03224 es_ES
dc.description.references Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469 es_ES
dc.description.references Ambrogio, M. W., Thomas, C. R., Zhao, Y.-L., Zink, J. I., & Stoddart, J. F. (2011). Mechanized Silica Nanoparticles: A New Frontier in Theranostic Nanomedicine. Accounts of Chemical Research, 44(10), 903-913. doi:10.1021/ar200018x es_ES
dc.description.references Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456 es_ES
dc.description.references Pascual, L., Sayed, S. E., Martínez-Máñez, R., Costero, A. M., Gil, S., Gaviña, P., & Sancenón, F. (2016). Acetylcholinesterase-Capped Mesoporous Silica Nanoparticles That Open in the Presence of Diisopropylfluorophosphate (a Sarin or Soman Simulant). Organic Letters, 18(21), 5548-5551. doi:10.1021/acs.orglett.6b02793 es_ES
dc.description.references El Sayed, S., Giménez, C., Aznar, E., Martínez-Máñez, R., Sancenón, F., & Licchelli, M. (2015). Highly selective and sensitive detection of glutathione using mesoporous silica nanoparticles capped with disulfide-containing oligo(ethylene glycol) chains. Organic & Biomolecular Chemistry, 13(4), 1017-1021. doi:10.1039/c4ob02083a es_ES
dc.description.references El Sayed, S., Milani, M., Licchelli, M., Martínez-Máñez, R., & Sancenón, F. (2015). Hexametaphosphate-Capped Silica Mesoporous Nanoparticles Containing CuIIComplexes for the Selective and Sensitive Optical Detection of Hydrogen Sulfide in Water. Chemistry - A European Journal, 21(19), 7002-7006. doi:10.1002/chem.201500360 es_ES
dc.description.references Attia, S., Shames, A., Zilbermann, I., Goobes, G., Maimon, E., & Meyerstein, D. (2014). Covalent binding of a nickel macrocyclic complex to a silica support: towards an electron exchange column. Dalton Trans., 43(1), 103-110. doi:10.1039/c3dt51962g es_ES
dc.description.references Fabbrizzi, L., Licchelli, M., Manotti Lanfredi, A. M., Vassalli, O., & Ugozzoli, F. (1996). Template Synthesis of a Tetraaza Macrocycle Which Involves Benzaldehyde Rather Than Formaldehyde as a Building Block. Isolation and Structure Determination of the Open-Chain Schiff Base Intermediate Complex. Inorganic Chemistry, 35(6), 1582-1589. doi:10.1021/ic950841k es_ES
dc.description.references Boiocchi, M., Licchelli, M., Milani, M., Poggi, A., & Sacchi, D. (2014). Oxo-Anion Recognition by Mono- and Bisurea Pendant-Arm Macrocyclic Complexes. Inorganic Chemistry, 54(1), 47-58. doi:10.1021/ic501527k es_ES
dc.description.references Fabbrizzi, L., Licchelli, M., Mosca, L., & Poggi, A. (2010). Template synthesis of azacyclam metal complexes using primary amides as locking fragments. Coordination Chemistry Reviews, 254(15-16), 1628-1636. doi:10.1016/j.ccr.2009.12.002 es_ES
dc.description.references Hinz, F. P., & Margerum, D. W. (1974). Ligand solvation and the macrocyclic effect. Nickel(II)-tetramine complexes. Inorganic Chemistry, 13(12), 2941-2949. doi:10.1021/ic50142a032 es_ES
dc.description.references El Sayed, S., Milani, M., Milanese, C., Licchelli, M., Martínez-Máñez, R., & Sancenón, F. (2016). Anions as Triggers in Controlled Release Protocols from Mesoporous Silica Nanoparticles Functionalized with Macrocyclic Copper(II) Complexes. Chemistry - A European Journal, 22(39), 13935-13945. doi:10.1002/chem.201601024 es_ES
dc.description.references Wang, L., Zhu, L., Li, L., & Cao, D. (2016). Tetraphenylethene-functionalized diketopyrrolopyrrole solid state emissive molecules: enhanced emission in the solid state and as a fluorescent probe for cyanide detection. RSC Advances, 6(60), 55182-55193. doi:10.1039/c6ra10073b es_ES
dc.description.references Wang, L., Li, L., & Cao, D. (2016). Dual binding site assisted chromogenic and fluorogenic discrimination of fluoride and cyanide by boryl functionalized BODIPY. Sensors and Actuators B: Chemical, 228, 347-359. doi:10.1016/j.snb.2016.01.044 es_ES
dc.description.references Wang, L., Li, L., & Cao, D. (2017). A BODIPY-based dye with red fluorescence in solid state and used as a fluorescent and colorimetric probe for highly selective detection of cyanide. Sensors and Actuators B: Chemical, 239, 1307-1317. doi:10.1016/j.snb.2016.09.112 es_ES
dc.description.references Wang, L., Li, L., & Cao, D. (2017). Synthesis, photoluminescence, chromogenic and fluorogenic discrimination of fluoride and cyanide based on a triphenylamine-tri(2-formyl BODIPY) conjugate. Sensors and Actuators B: Chemical, 241, 1224-1234. doi:10.1016/j.snb.2016.10.007 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem