- -

Genetic algorithms for the scheduling in additive manufacturing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Genetic algorithms for the scheduling in additive manufacturing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Castillo-Rivera, S. es_ES
dc.contributor.author De Antón, J. es_ES
dc.contributor.author del Olmo, R. es_ES
dc.contributor.author Pajares, J. es_ES
dc.contributor.author López-Paredes, A. es_ES
dc.date.accessioned 2020-07-23T09:46:34Z
dc.date.available 2020-07-23T09:46:34Z
dc.date.issued 2020-07-18
dc.identifier.uri http://hdl.handle.net/10251/148539
dc.description.abstract [EN] Genetic Algorithms (GAs) are introduced to tackle the packing problem. The scheduling in Additive Manufacturing (AM) is also dealt with to set up a managed market, called “Lonja3D”. This will enable to determine an alternative tool through the combinatorial auctions, wherein the customers will be able to purchase the products at the best prices from the manufacturers. Moreover, the manufacturers will be able to optimize the production capacity and to decrease the operating costs in each case. es_ES
dc.description.sponsorship This research has been partially financed by the project: “Lonja de Impresión 3D para la Industria 4.0 y la Empresa Digital (LONJA3D)” funded by the Regional Government of Castile and Leon and the European Regional Development Fund (ERDF, FEDER) with grant VA049P17 es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof International Journal of Production Management and Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Scheduling es_ES
dc.subject Packing Problem es_ES
dc.subject Genetic Algorithm es_ES
dc.title Genetic algorithms for the scheduling in additive manufacturing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/ijpme.2020.12173
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Castilla y León//VA049P17/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Castillo-Rivera, S.; De Antón, J.; Del Olmo, R.; Pajares, J.; López-Paredes, A. (2020). Genetic algorithms for the scheduling in additive manufacturing. International Journal of Production Management and Engineering. 8(2):59-63. https://doi.org/10.4995/ijpme.2020.12173 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/ijpme.2020.12173 es_ES
dc.description.upvformatpinicio 59 es_ES
dc.description.upvformatpfin 63 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2340-4876
dc.relation.pasarela OJS\12173 es_ES
dc.contributor.funder Junta de Castilla y León es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Ahsan, A., Habib, A., Khoda, B. (2015). Resource based process planning for additive manufacturing. Computer-Aided Design, 69, 112-125. https://doi.org/10.1016/j.cad.2015.03.006 es_ES
dc.description.references Araújo, L., Özcan, E., Atkin, J., Baumers, M., Tuck, C., Hague, R. (2015). Toward better build volume packing in additive manufacturing: classification of existing problems and benchmarks. 26th Annual International Solid Freeform Fabrication Symposium - an Additive Manufacturing Conference, 401-410. es_ES
dc.description.references Berman, B. (2012). 3-D printing: The new industrial revolution. Business Horizons, 55: 155-162. https://doi.org/10.1016/j.bushor.2011.11.003 es_ES
dc.description.references Canellidis, V., Dedoussis, V., Mantzouratos, N., Sofianopoulou, S. (2006). Preprocessing methodology for optimizing stereolithography apparatus build performance. Computers in Industry, 57, 424-436. https://doi.org/10.1016/j.compind.2006.02.004 es_ES
dc.description.references Chergui, A., Hadj-Hamoub, K., Vignata, F. (2018). Production scheduling and nesting in additive manufacturing. Computers & Industrial Engineering, 126, 292-301. https://doi.org/10.1016/j.cie.2018.09.048 es_ES
dc.description.references Demirel, E., Özelkan, E.C., Lim, C. (2018). Aggregate planning with flexibility requirements profile. International Journal of Production Economics, 202, 45-58. https://doi.org/10.1016/j.ijpe.2018.05.001 es_ES
dc.description.references Fera, M., Fruggiero, F., Lambiase, A., Macchiaroli, R., Todisco, V. (2018). A modified genetic algorithm for time and cost optimization of an additive manufacturing single-machine scheduling. International Journal of Industrial Engineering Computations, 9, 423-438. https://doi.org/10.5267/j.ijiec.2018.1.001 es_ES
dc.description.references Hopper, E., Turton, B. (1997). Application of genetic algorithms to packing problems - A Review. Proceedings of the 2nd Online World Conference on Soft Computing in Engineering Design and Manufacturing, Springer Verlag, London, 279-288. https://doi.org/10.1007/978-1-4471-0427-8_30 es_ES
dc.description.references Ikonen, I., Biles, W.E., Kumar, A., Wissel, J.C., Ragade, R.K. (1997). A genetic algorithm for packing three-dimensional non-convex objects having cavities and holes. ICGA, 591-598. es_ES
dc.description.references Kim, K.H., Egbelu, P.J. (1999). Scheduling in a production environment with multiple process plans per job. International Journal of Production Research, 37, 2725-2753. https://doi.org/10.1080/002075499190491 es_ES
dc.description.references Lawrynowicz, A. (2011). Genetic algorithms for solving scheduling problems in manufacturing systems. Foundations of Management, 3(2), 7-26. https://doi.org/10.2478/v10238-012-0039-2 es_ES
dc.description.references Li, Q., Kucukkoc, I., Zhang, D. (2017). Production planning in additive manufacturing and 3D printing. Computers and Operations Research, 83, 157-172. https://doi.org/10.1016/j.cor.2017.01.013 es_ES
dc.description.references Milošević, M., Lukić, D., Đurđev, M., Vukman, J., Antić, A. (2016). Genetic Algorithms in Integrated Process Planning and Scheduling-A State of The Art Review. Proceedings in Manufacturing Systems, 11(2), 83-88. es_ES
dc.description.references Pour, M.A., Zanardini, M., Bacchetti, A., Zanoni, S. (2016). Additive manufacturing impacts on productions and logistics systems. IFAC, 49(12), 1679-1684. https://doi.org/10.1016/j.ifacol.2016.07.822 es_ES
dc.description.references Wilhelm, W.E., Shin, H.M. (1985). Effectiveness of Alternate Operations in a Flexible Manufacturing System. International Journal of Production Research, 23(1), 65-79. https://doi.org/10.1080/00207548508904691 es_ES
dc.description.references Xirouchakis, P., Kiritsis, D., Persson, J.G. (1998). A Petri net Technique for Process Planning Cost Estimation. Annals of the CIRP, 47(1), 427-430. https://doi.org/10.1016/S0007-8506(07)62867-4 es_ES
dc.description.references Zhang, Y., Bernard, A., Gupta, R.K., Harik, R. (2014). Evaluating the design for additive manufacturing: a process planning perspective. Procedia CIRP, 21, 144-150. https://doi.org/10.1016/j.procir.2014.03.179 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem