- -

Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water

Mostrar el registro completo del ítem

Lozano-Torres, B.; Pascual, L.; Bernardos Bau, A.; Marcos Martínez, MD.; Jeppesen, JO.; Salinas Soler, Y.; Martínez-Máñez, R.... (2017). Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water. Chemical Communications. 53(25):3559-3562. https://doi.org/10.1039/c7cc00186j

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148677

Ficheros en el ítem

Metadatos del ítem

Título: Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water
Autor: Lozano-Torres, Beatriz Pascual, Lluís Bernardos Bau, Andrea Marcos Martínez, María Dolores Jeppesen, Jan Oskar Salinas Soler, Yolanda Martínez-Máñez, Ramón Sancenón Galarza, Félix
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Mesoporous silica nanoparticles loaded with fluorescein and capped by a pseudorotaxane, formed between a naphthalene derivative and cyclobis(paraquat-p-phenylene) (CBPQT(4+)), were used for the selective and sensitive ...[+]
Palabras clave: Gated materials , Ecstasy , Molecules , Mechanism , Machines , Receptor , Release , Drugs , Abuse
Derechos de uso: Reserva de todos los derechos
Fuente:
Chemical Communications. (issn: 1359-7345 )
DOI: 10.1039/c7cc00186j
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c7cc00186j
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/
info:eu-repo/grantAgreement/MINECO//IJCI-2014-21534/ES/IJCI-2014-21534/
info:eu-repo/grantAgreement/FNU//11-106744/
info:eu-repo/grantAgreement/GVA//GV%2F2014%2F013/
info:eu-repo/grantAgreement/MINECO//AGL2015-70235-C2-2-R/ES/DESARROLLO DE SISTEMAS HIBRIDOS CON OPTIMIZACION DEL ANCLADO DE BIOMOLECULAS Y DISEÑADOS CON PROPIEDADES DE ENCAPSULACION Y LIBERACION CONTROLADA MEJORADAS/
Agradecimientos:
The authors acknowledge the financial support from the Spanish Government (projects MAT2015-64139-C4-1-R and AGL2015-70235-C2-2-R) and the Generalitat Valenciana (project GVA/2014/13). B. L-T. is grateful to the Ministerio ...[+]
Tipo: Artículo

References

McLELLAN, A. T., LUBORSKY, L., WOODY, G. E., & O??BRIEN, C. P. (1980). An Improved Diagnostic Evaluation Instrument for Substance Abuse Patients. The Journal of Nervous and Mental Disease, 168(1), 26-33. doi:10.1097/00005053-198001000-00006

Moonzwe, L. S., Schensul, J. J., & Kostick, K. M. (2011). The Role of MDMA (Ecstasy) in Coping with Negative Life Situations Among Urban Young Adults. Journal of Psychoactive Drugs, 43(3), 199-210. doi:10.1080/02791072.2011.605671

Meyer, J. (2013). 3,4-methylenedioxymethamphetamine (MDMA): current perspectives. Substance Abuse and Rehabilitation, 83. doi:10.2147/sar.s37258 [+]
McLELLAN, A. T., LUBORSKY, L., WOODY, G. E., & O??BRIEN, C. P. (1980). An Improved Diagnostic Evaluation Instrument for Substance Abuse Patients. The Journal of Nervous and Mental Disease, 168(1), 26-33. doi:10.1097/00005053-198001000-00006

Moonzwe, L. S., Schensul, J. J., & Kostick, K. M. (2011). The Role of MDMA (Ecstasy) in Coping with Negative Life Situations Among Urban Young Adults. Journal of Psychoactive Drugs, 43(3), 199-210. doi:10.1080/02791072.2011.605671

Meyer, J. (2013). 3,4-methylenedioxymethamphetamine (MDMA): current perspectives. Substance Abuse and Rehabilitation, 83. doi:10.2147/sar.s37258

Greene, S. L., Kerr, F., & Braitberg, G. (2008). Review article: Amphetamines and related drugs of abuse. Emergency Medicine Australasia, 20(5), 391-402. doi:10.1111/j.1742-6723.2008.01114.x

Cumba, L. R., Smith, J. P., Zuway, K. Y., Sutcliffe, O. B., do Carmo, D. R., & Banks, C. E. (2016). Forensic electrochemistry: simultaneous voltammetric detection of MDMA and its fatal counterpart «Dr Death» (PMA). Analytical Methods, 8(1), 142-152. doi:10.1039/c5ay02924d

Pentney, A. R. (2001). An Exploration of the History and Controversies Surrounding MDMA and MDA. Journal of Psychoactive Drugs, 33(3), 213-221. doi:10.1080/02791072.2001.10400568

De Sousa Fernandes Perna, E. B., Theunissen, E. L., Kuypers, K. P. C., Heckman, P., de la Torre, R., Farre, M., & Ramaekers, J. G. (2014). Memory and mood during MDMA intoxication, with and without memantine pretreatment. Neuropharmacology, 87, 198-205. doi:10.1016/j.neuropharm.2014.03.008

Ferraz-de-Paula, V., Ribeiro, A., Souza-Queiroz, J., Pinheiro, M. L., Vecina, J. F., Souza, D. P. M., … Palermo-Neto, J. (2014). 3,4-Methylenedioxymethamphetamine (MDMA – Ecstasy) Decreases Neutrophil Activity Through the Glucocorticoid Pathway and Impairs Host Resistance to Listeria Monocytogenes Infection in Mice. Journal of Neuroimmune Pharmacology, 9(5), 690-702. doi:10.1007/s11481-014-9562-0

Kraner, J. C., McCoy, D. J., Evans, M. A., Evans, L. E., & Sweeney, B. J. (2001). Fatalities Caused by the MDMA-Related Drug Paramethoxyamphetamine (PMA). Journal of Analytical Toxicology, 25(7), 645-648. doi:10.1093/jat/25.7.645

Buckley, N. A. (2012). Methylenedioxymethamphetamine (Ecstasy, MDMA). Medical Toxicology of Drug Abuse, 126-155. doi:10.1002/9781118105955.ch9

Abraham, T. T., Barnes, A. J., Lowe, R. H., Kolbrich Spargo, E. A., Milman, G., Pirnay, S. O., … Huestis, M. A. (2009). Urinary MDMA, MDA, HMMA, and HMA Excretion Following Controlled MDMA Administration to Humans. Journal of Analytical Toxicology, 33(8), 439-446. doi:10.1093/jat/33.8.439

Pichini, S., Navarro, M., Pacifici, R., Zuccaro, P., Ortuño, J., Farré, M., … de la Torre, R. (2003). Usefulness of Sweat Testing for the Detection of MDMA after a Single-Dose Administration*. Journal of Analytical Toxicology, 27(5), 294-303. doi:10.1093/jat/27.5.294

Cuypers, E., Bonneure, A.-J., & Tytgat, J. (2015). The use of presumptive color tests for new psychoactive substances. Drug Testing and Analysis, 8(1), 136-140. doi:10.1002/dta.1847

Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456

Slowing, I. I., Vivero-Escoto, J. L., Trewyn, B. G., & Lin, V. S.-Y. (2010). Mesoporous silica nanoparticles: structural design and applications. Journal of Materials Chemistry, 20(37), 7924. doi:10.1039/c0jm00554a

Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469

Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053

Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Amorós, P. (2009). The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification. Angewandte Chemie International Edition, 48(45), 8519-8522. doi:10.1002/anie.200904243

Panman, M. R., Bodis, P., Shaw, D. J., Bakker, B. H., Newton, A. C., Kay, E. R., … Woutersen, S. (2010). Operation Mechanism of a Molecular Machine Revealed Using Time-Resolved Vibrational Spectroscopy. Science, 328(5983), 1255-1258. doi:10.1126/science.1187967

Durola, F., Sauvage, J.-P., & Wenger, O. S. (2010). The magic effect of endocyclic but non-sterically hindering biisoquinoline chelates: From fast-moving molecular shuttles to [3]rotaxanes. Coordination Chemistry Reviews, 254(15-16), 1748-1759. doi:10.1016/j.ccr.2009.09.034

Avellini, T., Li, H., Coskun, A., Barin, G., Trabolsi, A., Basuray, A. N., … Venturi, M. (2012). Photoinduced Memory Effect in a Redox Controllable Bistable Mechanical Molecular Switch. Angewandte Chemie International Edition, 51(7), 1611-1615. doi:10.1002/anie.201107618

Fahrenbach, A. C., Bruns, C. J., Li, H., Trabolsi, A., Coskun, A., & Stoddart, J. F. (2013). Ground-State Kinetics of Bistable Redox-Active Donor–Acceptor Mechanically Interlocked Molecules. Accounts of Chemical Research, 47(2), 482-493. doi:10.1021/ar400161z

Yang, W., Li, Y., Liu, H., Chi, L., & Li, Y. (2012). Design and Assembly of Rotaxane-Based Molecular Switches and Machines. Small, 8(4), 504-516. doi:10.1002/smll.201101738

Xue, M., Yang, Y., Chi, X., Yan, X., & Huang, F. (2015). Development of Pseudorotaxanes and Rotaxanes: From Synthesis to Stimuli-Responsive Motions to Applications. Chemical Reviews, 115(15), 7398-7501. doi:10.1021/cr5005869

Odell, B., Reddington, M. V., Slawin, A. M. Z., Spencer, N., Stoddart, J. F., & Williams, D. J. (1988). Cyclobis(paraquat-p-phenylene). A Tetracationic Multipurpose Receptor. Angewandte Chemie International Edition in English, 27(11), 1547-1550. doi:10.1002/anie.198815471

Gómez-López, M., Preece, J. A., & Stoddart, J. F. (1996). The art and science of self-assembling molecular machines. Nanotechnology, 7(3), 183-192. doi:10.1088/0957-4484/7/3/004

Bernardo, A. R., Stoddart, J. F., & Kaifer, A. E. (1992). Cyclobis(paraquat-p-phenylene) as a synthetic receptor for electron-rich aromatic compounds: electrochemical and spectroscopic studies of neurotransmitter binding. Journal of the American Chemical Society, 114(26), 10624-10631. doi:10.1021/ja00052a069

Anelli, P. L., Spencer, N., & Stoddart, J. F. (1991). A molecular shuttle. Journal of the American Chemical Society, 113(13), 5131-5133. doi:10.1021/ja00013a096

Ashton, P. R., Brown, C. L., Chrystal, E. J. T., Goodnow, T. T., Kaifer, A. E., Parry, K. P., … Williams, D. J. (1991). Self-Assembling[3]Catenanes. Angewandte Chemie International Edition in English, 30(8), 1039-1042. doi:10.1002/anie.199110391

Hernandez, R., Tseng, H.-R., Wong, J. W., Stoddart, J. F., & Zink, J. I. (2004). An Operational Supramolecular Nanovalve. Journal of the American Chemical Society, 126(11), 3370-3371. doi:10.1021/ja039424u

Patel, K., Angelos, S., Dichtel, W. R., Coskun, A., Yang, Y.-W., Zink, J. I., & Stoddart, J. F. (2008). Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. Journal of the American Chemical Society, 130(8), 2382-2383. doi:10.1021/ja0772086

Pascual, L., Sayed, S. E., Martínez-Máñez, R., Costero, A. M., Gil, S., Gaviña, P., & Sancenón, F. (2016). Acetylcholinesterase-Capped Mesoporous Silica Nanoparticles That Open in the Presence of Diisopropylfluorophosphate (a Sarin or Soman Simulant). Organic Letters, 18(21), 5548-5551. doi:10.1021/acs.orglett.6b02793

El Sayed, S., Milani, M., Licchelli, M., Martínez-Máñez, R., & Sancenón, F. (2015). Hexametaphosphate-Capped Silica Mesoporous Nanoparticles Containing CuIIComplexes for the Selective and Sensitive Optical Detection of Hydrogen Sulfide in Water. Chemistry - A European Journal, 21(19), 7002-7006. doi:10.1002/chem.201500360

Climent, E., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Murguía, J. R., … Pérez-Payá, E. (2013). Selective, Highly Sensitive, and Rapid Detection of Genomic DNA by Using Gated Materials:MycoplasmaDetection. Angewandte Chemie International Edition, 52(34), 8938-8942. doi:10.1002/anie.201302954

Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0

Wu, S.-H., Mou, C.-Y., & Lin, H.-P. (2013). Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 42(9), 3862. doi:10.1039/c3cs35405a

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem