Mostrar el registro sencillo del ítem
dc.contributor.author | Ferri Pascual, Josué | es_ES |
dc.contributor.author | Lidon-Roger, Jose V. | es_ES |
dc.contributor.author | Moreno Canton, Jorge | es_ES |
dc.contributor.author | Martinez, G. | es_ES |
dc.contributor.author | Garcia-Breijo, Eduardo | es_ES |
dc.date.accessioned | 2020-07-25T03:31:20Z | |
dc.date.available | 2020-07-25T03:31:20Z | |
dc.date.issued | 2017-12-20 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/148683 | |
dc.description.abstract | [EN] Among many of the designs used in the detection of 2D gestures for portable technology, the touchpad is one of the most complex and with more functions to implement. Its development has undergone a great push due to its use in displays, but it is not widely used with other technologies. Its application on textiles could allow a wide range of applications in the field of medicine, sports, etc. Obtaining a flexible, robust touchpad with good response and low cost is one of the objectives of this work. A textile touchpad based on a diamond pattern design using screen printing technology has been developed. This technology is widely used in the textile industry and therefore does not require heavy investments. The developed prototypes were analyzed using a particular controller for projected capacitive technologies (pro-cap), which is the most used in gesture detection. Two different designs were used to obtain the best configuration, obtaining a good result in both cases. | es_ES |
dc.description.sponsorship | This work was supported by Spanish Government/FEDER funds (grant number MAT2015-64139-C4-3-R (Mineco/Feder)). The work presented is also funded by the Conselleria d'Economia Sostenible, Sectors Productius i Treball, through IVACE (Instituto Valenciano de Competitividad Empresarial) and co-funded by ERDF funding from the EU. Application No. IMAMCI/2017/1. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Materials | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Wearable sensing | es_ES |
dc.subject | Touchpad | es_ES |
dc.subject | Textile | es_ES |
dc.subject | Screen-printing technology | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | A Wearable Textile 2D Touchpad Sensor Based on Screen-Printing Technology | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ma10121450 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/IVACE//IMAMCI%2F2017%2F1/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-3-R/ES/DESARROLLO DE EQUIPOS Y DISPOSITIVOS ELECTRONICOS COMO SISTEMA DE DETECCION Y ACTUACION BASADOS EN NUEVAS TECNOLOGIAS ELECTRONICAS. APLICACION AL AREA BIOMEDICA./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Ferri Pascual, J.; Lidon-Roger, JV.; Moreno Canton, J.; Martinez, G.; Garcia-Breijo, E. (2017). A Wearable Textile 2D Touchpad Sensor Based on Screen-Printing Technology. Materials. 10(12):1-16. https://doi.org/10.3390/ma10121450 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ma10121450 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 12 | es_ES |
dc.identifier.eissn | 1996-1944 | es_ES |
dc.identifier.pmid | 29261167 | es_ES |
dc.identifier.pmcid | PMC5744385 | es_ES |
dc.relation.pasarela | S\349042 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Institut Valencià de Competitivitat Empresarial | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Takamatsu, S., Lonjaret, T., Ismailova, E., Masuda, A., Itoh, T., & Malliaras, G. G. (2015). Wearable Keyboard Using Conducting Polymer Electrodes on Textiles. Advanced Materials, 28(22), 4485-4488. doi:10.1002/adma.201504249 | es_ES |
dc.description.references | McMillan, D., Brown, B., Lampinen, A., McGregor, M., Hoggan, E., & Pizza, S. (2017). Situating Wearables. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. doi:10.1145/3025453.3025993 | es_ES |
dc.description.references | Nirjon, S., Gummeson, J., Gelb, D., & Kim, K.-H. (2015). TypingRing. Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services - MobiSys ’15. doi:10.1145/2742647.2742665 | es_ES |
dc.description.references | Rekimoto, J. (s. f.). GestureWrist and GesturePad: unobtrusive wearable interaction devices. Proceedings Fifth International Symposium on Wearable Computers. doi:10.1109/iswc.2001.962092 | es_ES |
dc.description.references | Kim, K., Joo, D., & Lee, K.-P. (2010). Wearable-object-based interaction for a mobile audio device. Proceedings of the 28th of the international conference extended abstracts on Human factors in computing systems - CHI EA ’10. doi:10.1145/1753846.1754070 | es_ES |
dc.description.references | Yoon, S. H., Huo, K., & Ramani, K. (2016). Wearable textile input device with multimodal sensing for eyes-free mobile interaction during daily activities. Pervasive and Mobile Computing, 33, 17-31. doi:10.1016/j.pmcj.2016.04.008 | es_ES |
dc.description.references | Van Heek, J., Schaar, A. K., Trevisan, B., Bosowski, P., & Ziefle, M. (2014). User requirements for wearable smart textiles. Does the usage context matter (medical vs. sports)? Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare. doi:10.4108/icst.pervasivehealth.2014.255179 | es_ES |
dc.description.references | Rogers, J. A., Someya, T., & Huang, Y. (2010). Materials and Mechanics for Stretchable Electronics. Science, 327(5973), 1603-1607. doi:10.1126/science.1182383 | es_ES |
dc.description.references | Fan, J. A., Yeo, W.-H., Su, Y., Hattori, Y., Lee, W., Jung, S.-Y., … Rogers, J. A. (2014). Fractal design concepts for stretchable electronics. Nature Communications, 5(1). doi:10.1038/ncomms4266 | es_ES |
dc.description.references | Bhalla, M. R., & Bhalla, A. V. (2010). Comparative Study of Various Touchscreen Technologies. International Journal of Computer Applications, 6(8), 12-18. doi:10.5120/1097-1433 | es_ES |
dc.description.references | Walker, G. (2012). A review of technologies for sensing contact location on the surface of a display. Journal of the Society for Information Display, 20(8), 413-440. doi:10.1002/jsid.100 | es_ES |
dc.description.references | Pedersen, H. C., Jakobsen, M. L., Hanson, S. G., Mosgaard, M., Iversen, T., & Korsgaard, J. (2011). Optical touch screen based on waveguide sensing. Applied Physics Letters, 99(6), 061102. doi:10.1063/1.3615656 | es_ES |
dc.description.references | Emamian, S., Avuthu, S. G. R., Narakathu, B. B., Eshkeiti, A., Chlaihawi, A. A., Bazuin, B. J., … Atashbar, M. Z. (2015). Fully printed and flexible piezoelectric based touch sensitive skin. 2015 IEEE SENSORS. doi:10.1109/icsens.2015.7370651 | es_ES |
dc.description.references | George, B., Zangl, H., Bretterklieber, T., & Brasseur, G. (2010). A Combined Inductive–Capacitive Proximity Sensor for Seat Occupancy Detection. IEEE Transactions on Instrumentation and Measurement, 59(5), 1463-1470. doi:10.1109/tim.2010.2040910 | es_ES |
dc.description.references | Gunnarsson, E., Karlsteen, M., Berglin, L., & Stray, J. (2014). A novel technique for direct measurements of contact resistance between interlaced conductive yarns in a plain weave. Textile Research Journal, 85(5), 499-511. doi:10.1177/0040517514532158 | es_ES |
dc.description.references | Enokibori, Y., Suzuki, A., Mizuno, H., Shimakami, Y., & Mase, K. (2013). E-textile pressure sensor based on conductive fiber and its structure. Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication - UbiComp ’13 Adjunct. doi:10.1145/2494091.2494158 | es_ES |
dc.description.references | Wei, Y., Torah, R., Li, Y., & Tudor, J. (2016). Dispenser printed capacitive proximity sensor on fabric for applications in the creative industries. Sensors and Actuators A: Physical, 247, 239-246. doi:10.1016/j.sna.2016.06.005 | es_ES |
dc.description.references | Gorgutsa, S., Gu, J. F., & Skorobogatiy, M. (2011). A woven 2D touchpad sensor and a 1D slide sensor using soft capacitor fibers. Smart Materials and Structures, 21(1), 015010. doi:10.1088/0964-1726/21/1/015010 | es_ES |
dc.description.references | Hamdan, N. A., Heller, F., Wacharamanotham, C., Thar, J., & Borchers, J. (2016). Grabrics. Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems - CHI EA ’16. doi:10.1145/2851581.2892529 | es_ES |
dc.description.references | Kim, D.-K. (2010). A Touchpad for Force and Location Sensing. ETRI Journal, 32(5), 722-728. doi:10.4218/etrij.10.1510.0073 | es_ES |