- -

A Wearable Textile 2D Touchpad Sensor Based on Screen-Printing Technology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Wearable Textile 2D Touchpad Sensor Based on Screen-Printing Technology

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ferri Pascual, Josué es_ES
dc.contributor.author Lidon-Roger, Jose V. es_ES
dc.contributor.author Moreno Canton, Jorge es_ES
dc.contributor.author Martinez, G. es_ES
dc.contributor.author Garcia-Breijo, Eduardo es_ES
dc.date.accessioned 2020-07-25T03:31:20Z
dc.date.available 2020-07-25T03:31:20Z
dc.date.issued 2017-12-20 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148683
dc.description.abstract [EN] Among many of the designs used in the detection of 2D gestures for portable technology, the touchpad is one of the most complex and with more functions to implement. Its development has undergone a great push due to its use in displays, but it is not widely used with other technologies. Its application on textiles could allow a wide range of applications in the field of medicine, sports, etc. Obtaining a flexible, robust touchpad with good response and low cost is one of the objectives of this work. A textile touchpad based on a diamond pattern design using screen printing technology has been developed. This technology is widely used in the textile industry and therefore does not require heavy investments. The developed prototypes were analyzed using a particular controller for projected capacitive technologies (pro-cap), which is the most used in gesture detection. Two different designs were used to obtain the best configuration, obtaining a good result in both cases. es_ES
dc.description.sponsorship This work was supported by Spanish Government/FEDER funds (grant number MAT2015-64139-C4-3-R (Mineco/Feder)). The work presented is also funded by the Conselleria d'Economia Sostenible, Sectors Productius i Treball, through IVACE (Instituto Valenciano de Competitividad Empresarial) and co-funded by ERDF funding from the EU. Application No. IMAMCI/2017/1. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Materials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Wearable sensing es_ES
dc.subject Touchpad es_ES
dc.subject Textile es_ES
dc.subject Screen-printing technology es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title A Wearable Textile 2D Touchpad Sensor Based on Screen-Printing Technology es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ma10121450 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/IVACE//IMAMCI%2F2017%2F1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-3-R/ES/DESARROLLO DE EQUIPOS Y DISPOSITIVOS ELECTRONICOS COMO SISTEMA DE DETECCION Y ACTUACION BASADOS EN NUEVAS TECNOLOGIAS ELECTRONICAS. APLICACION AL AREA BIOMEDICA./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Ferri Pascual, J.; Lidon-Roger, JV.; Moreno Canton, J.; Martinez, G.; Garcia-Breijo, E. (2017). A Wearable Textile 2D Touchpad Sensor Based on Screen-Printing Technology. Materials. 10(12):1-16. https://doi.org/10.3390/ma10121450 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ma10121450 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 1996-1944 es_ES
dc.identifier.pmid 29261167 es_ES
dc.identifier.pmcid PMC5744385 es_ES
dc.relation.pasarela S\349042 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Institut Valencià de Competitivitat Empresarial es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Takamatsu, S., Lonjaret, T., Ismailova, E., Masuda, A., Itoh, T., & Malliaras, G. G. (2015). Wearable Keyboard Using Conducting Polymer Electrodes on Textiles. Advanced Materials, 28(22), 4485-4488. doi:10.1002/adma.201504249 es_ES
dc.description.references McMillan, D., Brown, B., Lampinen, A., McGregor, M., Hoggan, E., & Pizza, S. (2017). Situating Wearables. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. doi:10.1145/3025453.3025993 es_ES
dc.description.references Nirjon, S., Gummeson, J., Gelb, D., & Kim, K.-H. (2015). TypingRing. Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services - MobiSys ’15. doi:10.1145/2742647.2742665 es_ES
dc.description.references Rekimoto, J. (s. f.). GestureWrist and GesturePad: unobtrusive wearable interaction devices. Proceedings Fifth International Symposium on Wearable Computers. doi:10.1109/iswc.2001.962092 es_ES
dc.description.references Kim, K., Joo, D., & Lee, K.-P. (2010). Wearable-object-based interaction for a mobile audio device. Proceedings of the 28th of the international conference extended abstracts on Human factors in computing systems - CHI EA ’10. doi:10.1145/1753846.1754070 es_ES
dc.description.references Yoon, S. H., Huo, K., & Ramani, K. (2016). Wearable textile input device with multimodal sensing for eyes-free mobile interaction during daily activities. Pervasive and Mobile Computing, 33, 17-31. doi:10.1016/j.pmcj.2016.04.008 es_ES
dc.description.references Van Heek, J., Schaar, A. K., Trevisan, B., Bosowski, P., & Ziefle, M. (2014). User requirements for wearable smart textiles. Does the usage context matter (medical vs. sports)? Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare. doi:10.4108/icst.pervasivehealth.2014.255179 es_ES
dc.description.references Rogers, J. A., Someya, T., & Huang, Y. (2010). Materials and Mechanics for Stretchable Electronics. Science, 327(5973), 1603-1607. doi:10.1126/science.1182383 es_ES
dc.description.references Fan, J. A., Yeo, W.-H., Su, Y., Hattori, Y., Lee, W., Jung, S.-Y., … Rogers, J. A. (2014). Fractal design concepts for stretchable electronics. Nature Communications, 5(1). doi:10.1038/ncomms4266 es_ES
dc.description.references Bhalla, M. R., & Bhalla, A. V. (2010). Comparative Study of Various Touchscreen Technologies. International Journal of Computer Applications, 6(8), 12-18. doi:10.5120/1097-1433 es_ES
dc.description.references Walker, G. (2012). A review of technologies for sensing contact location on the surface of a display. Journal of the Society for Information Display, 20(8), 413-440. doi:10.1002/jsid.100 es_ES
dc.description.references Pedersen, H. C., Jakobsen, M. L., Hanson, S. G., Mosgaard, M., Iversen, T., & Korsgaard, J. (2011). Optical touch screen based on waveguide sensing. Applied Physics Letters, 99(6), 061102. doi:10.1063/1.3615656 es_ES
dc.description.references Emamian, S., Avuthu, S. G. R., Narakathu, B. B., Eshkeiti, A., Chlaihawi, A. A., Bazuin, B. J., … Atashbar, M. Z. (2015). Fully printed and flexible piezoelectric based touch sensitive skin. 2015 IEEE SENSORS. doi:10.1109/icsens.2015.7370651 es_ES
dc.description.references George, B., Zangl, H., Bretterklieber, T., & Brasseur, G. (2010). A Combined Inductive–Capacitive Proximity Sensor for Seat Occupancy Detection. IEEE Transactions on Instrumentation and Measurement, 59(5), 1463-1470. doi:10.1109/tim.2010.2040910 es_ES
dc.description.references Gunnarsson, E., Karlsteen, M., Berglin, L., & Stray, J. (2014). A novel technique for direct measurements of contact resistance between interlaced conductive yarns in a plain weave. Textile Research Journal, 85(5), 499-511. doi:10.1177/0040517514532158 es_ES
dc.description.references Enokibori, Y., Suzuki, A., Mizuno, H., Shimakami, Y., & Mase, K. (2013). E-textile pressure sensor based on conductive fiber and its structure. Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication - UbiComp ’13 Adjunct. doi:10.1145/2494091.2494158 es_ES
dc.description.references Wei, Y., Torah, R., Li, Y., & Tudor, J. (2016). Dispenser printed capacitive proximity sensor on fabric for applications in the creative industries. Sensors and Actuators A: Physical, 247, 239-246. doi:10.1016/j.sna.2016.06.005 es_ES
dc.description.references Gorgutsa, S., Gu, J. F., & Skorobogatiy, M. (2011). A woven 2D touchpad sensor and a 1D slide sensor using soft capacitor fibers. Smart Materials and Structures, 21(1), 015010. doi:10.1088/0964-1726/21/1/015010 es_ES
dc.description.references Hamdan, N. A., Heller, F., Wacharamanotham, C., Thar, J., & Borchers, J. (2016). Grabrics. Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems - CHI EA ’16. doi:10.1145/2851581.2892529 es_ES
dc.description.references Kim, D.-K. (2010). A Touchpad for Force and Location Sensing. ETRI Journal, 32(5), 722-728. doi:10.4218/etrij.10.1510.0073 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem