- -

N-Doped graphene as a metal-free catalyst for glucose oxidation to succinic acid

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

N-Doped graphene as a metal-free catalyst for glucose oxidation to succinic acid

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rizescu, Cristina es_ES
dc.contributor.author Podolean, Iunia es_ES
dc.contributor.author Albero-Sancho, Josep es_ES
dc.contributor.author Parvulescu, Vasile I. es_ES
dc.contributor.author Coman, Simona M. es_ES
dc.contributor.author Bucur, Cristina es_ES
dc.contributor.author Puche Panadero, Marta es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2020-07-30T03:35:00Z
dc.date.available 2020-07-30T03:35:00Z
dc.date.issued 2017-04-21 es_ES
dc.identifier.issn 1463-9262 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148890
dc.description.abstract [EN] N-Containing graphenes obtained either by simultaneous amination and reduction of graphene oxide or by pyrolysis of chitosan under an inert atmosphere have been found to act as catalysts for the selective wet oxidation of glucose to succinic acid. Selectivity values over 60% at complete glucose conversion have been achieved by performing the reaction at 160 degrees C and 18 atm O-2 pressure for 20 h. This activity has been attributed to graphenic-type N atoms on graphene. The active N-containing graphene catalysts were used four times without observing a decrease in conversion and selectivity of the process. A mechanism having tartaric and fumaric acids as key intermediates is proposed. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, Grapas and CTQ2015-69153-CO2-R1) and Generalitat Valenciana (Prometeo 2013-014) is gratefully acknowledged. Prof. Simona M. Coman kindly acknowledges UEFISCDI for financial support (project PN-II-PT-PCCA-2013-4-1090, Nr. 44/2014). Cristina Bucur acknowledges Core Programme, Project PN-480103/2016. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Green Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Wet oxidation es_ES
dc.subject Wheat-Straw es_ES
dc.subject Renewable chemicals es_ES
dc.subject Oxide es_ES
dc.subject Biomass es_ES
dc.subject Carbocatalysis es_ES
dc.subject Hydrocarbons es_ES
dc.subject Pretreatment es_ES
dc.subject Activation es_ES
dc.subject Persulfate es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title N-Doped graphene as a metal-free catalyst for glucose oxidation to succinic acid es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/C7GC00473G es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-69153-C2-1-R/ES/EXPLOTANDO EL USO DEL GRAFENO EN CATALISIS. USO DEL GRAFENO COMO CARBOCATALIZADOR O COMO SOPORTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIMP//PN-480103%2F2016/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UEFISCDI//PN-II-PT-PCCA-2013-4-1090 44%2F2014/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F014/ES/SINTESIS DE GRAFENO Y DERIVADOS COMO SENSORES O CON PROPIEDADES OPTOELECTRONICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Rizescu, C.; Podolean, I.; Albero-Sancho, J.; Parvulescu, VI.; Coman, SM.; Bucur, C.; Puche Panadero, M.... (2017). N-Doped graphene as a metal-free catalyst for glucose oxidation to succinic acid. Green Chemistry. 19(8):1999-2005. https://doi.org/10.1039/C7GC00473G es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/C7GC00473G es_ES
dc.description.upvformatpinicio 1999 es_ES
dc.description.upvformatpfin 2005 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 8 es_ES
dc.relation.pasarela S\355406 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder National Institute of Materials Physics, Rumanía es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder Executive Agency for Higher Education, Scientific Research, Development and Innovation Funding, Rumanía es_ES
dc.description.references Alonso, D. M., Wettstein, S. G., & Dumesic, J. A. (2012). Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chemical Society Reviews, 41(24), 8075. doi:10.1039/c2cs35188a es_ES
dc.description.references Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412-1421. doi:10.1016/j.enconman.2010.01.015 es_ES
dc.description.references Christensen, C. H., Rass-Hansen, J., Marsden, C. C., Taarning, E., & Egeblad, K. (2008). The Renewable Chemicals Industry. ChemSusChem, 1(4), 283-289. doi:10.1002/cssc.200700168 es_ES
dc.description.references Lange, J.-P. (2007). Lignocellulose conversion: an introduction to chemistry, process and economics. Biofuels, Bioproducts and Biorefining, 1(1), 39-48. doi:10.1002/bbb.7 es_ES
dc.description.references Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d es_ES
dc.description.references Climent, M. J., Corma, A., & Iborra, S. (2011). Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chemistry, 13(3), 520. doi:10.1039/c0gc00639d es_ES
dc.description.references Bjerre, A. B., Olesen, A. B., Fernqvist, T., Plöger, A., & Schmidt, A. S. (2000). Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnology and Bioengineering, 49(5), 568-577. doi:10.1002/(sici)1097-0290(19960305)49:5<568::aid-bit10>3.0.co;2-6 es_ES
dc.description.references Klinke, H. B., Ahring, B. K., Schmidt, A. S., & Thomsen, A. B. (2002). Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresource Technology, 82(1), 15-26. doi:10.1016/s0960-8524(01)00152-3 es_ES
dc.description.references Schmidt, A. S., & Thomsen, A. B. (1998). Optimization of wet oxidation pretreatment of wheat straw. Bioresource Technology, 64(2), 139-151. doi:10.1016/s0960-8524(97)00164-8 es_ES
dc.description.references Gogate, P. R., & Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advances in Environmental Research, 8(3-4), 501-551. doi:10.1016/s1093-0191(03)00032-7 es_ES
dc.description.references Mishra, V. S., Mahajani, V. V., & Joshi, J. B. (1995). Wet Air Oxidation. Industrial & Engineering Chemistry Research, 34(1), 2-48. doi:10.1021/ie00040a001 es_ES
dc.description.references Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L., & Weckhuysen, B. M. (2010). The Catalytic Valorization of Lignin for the Production of Renewable Chemicals. Chemical Reviews, 110(6), 3552-3599. doi:10.1021/cr900354u es_ES
dc.description.references Podolean, I., Rizescu, C., Bala, C., Rotariu, L., Parvulescu, V. I., Coman, S. M., & Garcia, H. (2016). Unprecedented Catalytic Wet Oxidation of Glucose to Succinic Acid Induced by the Addition ofn-Butylamine to a RuIIICatalyst. ChemSusChem, 9(17), 2307-2311. doi:10.1002/cssc.201600474 es_ES
dc.description.references Huang, C., Li, C., & Shi, G. (2012). Graphene based catalysts. Energy & Environmental Science, 5(10), 8848. doi:10.1039/c2ee22238h es_ES
dc.description.references Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2014). Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 114(12), 6179-6212. doi:10.1021/cr4007347 es_ES
dc.description.references Su, D. S., Perathoner, S., & Centi, G. (2013). Nanocarbons for the Development of Advanced Catalysts. Chemical Reviews, 113(8), 5782-5816. doi:10.1021/cr300367d es_ES
dc.description.references Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M., & Garcia, H. (2013). Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 19(23), 7547-7554. doi:10.1002/chem.201300653 es_ES
dc.description.references Huang, H., Huang, J., Liu, Y.-M., He, H.-Y., Cao, Y., & Fan, K.-N. (2012). Graphite oxide as an efficient and durable metal-free catalyst for aerobic oxidative coupling of amines to imines. Green Chemistry, 14(4), 930. doi:10.1039/c2gc16681j es_ES
dc.description.references Li, X.-H., Chen, J.-S., Wang, X., Sun, J., & Antonietti, M. (2011). Metal-Free Activation of Dioxygen by Graphene/g-C3N4Nanocomposites: Functional Dyads for Selective Oxidation of Saturated Hydrocarbons. Journal of the American Chemical Society, 133(21), 8074-8077. doi:10.1021/ja200997a es_ES
dc.description.references Sun, H., Wang, Y., Liu, S., Ge, L., Wang, L., Zhu, Z., & Wang, S. (2013). Facile synthesis of nitrogen doped reduced graphene oxide as a superior metal-free catalyst for oxidation. Chemical Communications, 49(85), 9914. doi:10.1039/c3cc43401j es_ES
dc.description.references Yang, J.-H., Sun, G., Gao, Y., Zhao, H., Tang, P., Tan, J., … Ma, D. (2013). Direct catalytic oxidation of benzene to phenol over metal-free graphene-based catalyst. Energy & Environmental Science, 6(3), 793. doi:10.1039/c3ee23623d es_ES
dc.description.references Rocha, R. P., Gonçalves, A. G., Pastrana-Martínez, L. M., Bordoni, B. C., Soares, O. S. G. P., Órfão, J. J. M., … Pereira, M. F. R. (2015). Nitrogen-doped graphene-based materials for advanced oxidation processes. Catalysis Today, 249, 192-198. doi:10.1016/j.cattod.2014.10.046 es_ES
dc.description.references Wang, Y., Xie, Y., Sun, H., Xiao, J., Cao, H., & Wang, S. (2016). Efficient Catalytic Ozonation over Reduced Graphene Oxide for p-Hydroxylbenzoic Acid (PHBA) Destruction: Active Site and Mechanism. ACS Applied Materials & Interfaces, 8(15), 9710-9720. doi:10.1021/acsami.6b01175 es_ES
dc.description.references Duan, X., Su, C., Zhou, L., Sun, H., Suvorova, A., Odedairo, T., … Wang, S. (2016). Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds. Applied Catalysis B: Environmental, 194, 7-15. doi:10.1016/j.apcatb.2016.04.043 es_ES
dc.description.references Kang, J., Duan, X., Zhou, L., Sun, H., Tadé, M. O., & Wang, S. (2016). Carbocatalytic activation of persulfate for removal of antibiotics in water solutions. Chemical Engineering Journal, 288, 399-405. doi:10.1016/j.cej.2015.12.040 es_ES
dc.description.references Sun, H., Kwan, C., Suvorova, A., Ang, H. M., Tadé, M. O., & Wang, S. (2014). Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals. Applied Catalysis B: Environmental, 154-155, 134-141. doi:10.1016/j.apcatb.2014.02.012 es_ES
dc.description.references Wang, X., Qin, Y., Zhu, L., & Tang, H. (2015). Nitrogen-Doped Reduced Graphene Oxide as a Bifunctional Material for Removing Bisphenols: Synergistic Effect between Adsorption and Catalysis. Environmental Science & Technology, 49(11), 6855-6864. doi:10.1021/acs.est.5b01059 es_ES
dc.description.references Lai, L., Potts, J. R., Zhan, D., Wang, L., Poh, C. K., Tang, C., … Ruoff, R. S. (2012). Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy & Environmental Science, 5(7), 7936. doi:10.1039/c2ee21802j es_ES
dc.description.references Li, X., Wang, H., Robinson, J. T., Sanchez, H., Diankov, G., & Dai, H. (2009). Simultaneous Nitrogen Doping and Reduction of Graphene Oxide. Journal of the American Chemical Society, 131(43), 15939-15944. doi:10.1021/ja907098f es_ES
dc.description.references Long, D., Li, W., Ling, L., Miyawaki, J., Mochida, I., & Yoon, S.-H. (2010). Preparation of Nitrogen-Doped Graphene Sheets by a Combined Chemical and Hydrothermal Reduction of Graphene Oxide. Langmuir, 26(20), 16096-16102. doi:10.1021/la102425a es_ES
dc.description.references Lavorato, C., Primo, A., Molinari, R., & Garcia, H. (2013). N-Doped Graphene Derived from Biomass as a Visible-Light Photocatalyst for Hydrogen Generation from Water/Methanol Mixtures. Chemistry - A European Journal, 20(1), 187-194. doi:10.1002/chem.201303689 es_ES
dc.description.references Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g es_ES
dc.description.references Primo, A., Sánchez, E., Delgado, J. M., & García, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068 es_ES
dc.description.references Chan, L. H., Hong, K. H., Xiao, D. Q., Lin, T. C., Lai, S. H., Hsieh, W. J., & Shih, H. C. (2004). Resolution of the binding configuration in nitrogen-doped carbon nanotubes. Physical Review B, 70(12). doi:10.1103/physrevb.70.125408 es_ES
dc.description.references Guo, B., Liu, Q., Chen, E., Zhu, H., Fang, L., & Gong, J. R. (2010). Controllable N-Doping of Graphene. Nano Letters, 10(12), 4975-4980. doi:10.1021/nl103079j es_ES
dc.description.references Sun, L., Wang, L., Tian, C., Tan, T., Xie, Y., Shi, K., … Fu, H. (2012). Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Advances, 2(10), 4498. doi:10.1039/c2ra01367c es_ES
dc.description.references Asedegbega-Nieto, E., Perez-Cadenas, M., Morales, M. V., Bachiller-Baeza, B., Gallegos-Suarez, E., Rodriguez-Ramos, I., & Guerrero-Ruiz, A. (2014). High nitrogen doped graphenes and their applicability as basic catalysts. Diamond and Related Materials, 44, 26-32. doi:10.1016/j.diamond.2014.01.019 es_ES
dc.description.references Jiang, H., Yu, X., Nie, R., Lu, X., Zhou, D., & Xia, Q. (2016). Selective hydrogenation of aromatic carboxylic acids over basic N-doped mesoporous carbon supported palladium catalysts. Applied Catalysis A: General, 520, 73-81. doi:10.1016/j.apcata.2016.04.009 es_ES
dc.description.references Primo, A., Parvulescu, V., & Garcia, H. (2016). Graphenes as Metal-Free Catalysts with Engineered Active Sites. The Journal of Physical Chemistry Letters, 8(1), 264-278. doi:10.1021/acs.jpclett.6b01996 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem