- -

ABS-FishCount: An Agent-Based Simulator of Underwater Sensors for Measuring the Amount of Fish

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

ABS-FishCount: An Agent-Based Simulator of Underwater Sensors for Measuring the Amount of Fish

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Magariño, Iván es_ES
dc.contributor.author Lacuesta Gilabert, Raquel es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2020-07-30T03:35:44Z
dc.date.available 2020-07-30T03:35:44Z
dc.date.issued 2017-11-13 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148910
dc.description.abstract [EN] Underwater sensors provide one of the possibilities to explore oceans, seas, rivers, fish farms and dams, which all together cover most of our planet's area. Simulators can be helpful to test and discover some possible strategies before implementing these in real underwater sensors. This speeds up the development of research theories so that these can be implemented later. In this context, the current work presents an agent-based simulator for defining and testing strategies for measuring the amount of fish by means of underwater sensors. The current approach is illustrated with the definition and assessment of two strategies for measuring fish. One of these two corresponds to a simple control mechanism, while the other is an experimental strategy and includes an implicit coordination mechanism. The experimental strategy showed a statistically significant improvement over the control one in the reduction of errors with a large Cohen's d effect size of 2.55. es_ES
dc.description.sponsorship This work acknowledges the research project Desarrollo Colaborativo de Soluciones AAL with reference TIN2014-57028-R funded by the Spanish Ministry of Economy and Competitiveness. This work has been supported by the program Estancias de movilidad en el extranjero José Castillejo para jóvenes doctores funded by the Spanish Ministry of Education, Culture and Sport with reference CAS17/00005. We also acknowledge support from Universidad de Zaragoza , Fundación Bancaria Ibercaja and Fundación CAI in the Programa Ibercaja-CAI de Estancias de Investigación with reference IT24/16. We acknowledge the research project Construcción de un framework para agilizar el desarrollo de aplicaciones móviles en el ámbito de la salud funded by University of Zaragoza and Foundation Ibercaja with grant reference JIUZ-2017-TEC-03. It has also been supported by Organismo Autónomo Programas Educativos Europeos with reference 2013-1-CZ1-GRU06-14277. We also aknowledge support from project Sensores vestibles y tecnología móvil como apoyo en la formación y práctica de mindfulness: prototipo previo aplicado a bienestar funded by University of Zaragoza with grant number UZ2017-TEC-02. Furthermore, we acknowledge the Fondo Social Europeo and the Departamento de Tecnología y Universidad del Gobierno de Aragón for their joint support with grant number Ref-T81. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Agent-based simulation es_ES
dc.subject Agent-based social simulation es_ES
dc.subject Multi-agent system es_ES
dc.subject Agent-oriented software engineering es_ES
dc.subject Underwater sensor es_ES
dc.subject Underwater sensor network es_ES
dc.subject Simulator software es_ES
dc.subject Fish measurement es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title ABS-FishCount: An Agent-Based Simulator of Underwater Sensors for Measuring the Amount of Fish es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s17112606 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNIZAR//JIUZ-2017-TEC-03/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//CAS17%2F00005/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/OAPEE//2013-1-CZ1-GRU06-14277/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Gobierno de Aragón//Ref-T81/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2014-57028-R/ES/DESARROLLLO COLABORATIVO DE SOLUCIONES AAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Fundación Bancaria Ibercaja//IT24%2F16/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNIZAR//UZ2017-TEC-02/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation García-Magariño, I.; Lacuesta Gilabert, R.; Lloret, J. (2017). ABS-FishCount: An Agent-Based Simulator of Underwater Sensors for Measuring the Amount of Fish. Sensors. 17(11):1-19. https://doi.org/10.3390/s17112606 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s17112606 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 29137165 es_ES
dc.identifier.pmcid PMC5713010 es_ES
dc.relation.pasarela S\376365 es_ES
dc.contributor.funder Gobierno de Aragón es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Universidad de Zaragoza es_ES
dc.contributor.funder Fundación Caja Inmaculada es_ES
dc.contributor.funder Fundación Bancaria Ibercaja es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Organismo Autónomo Programas Educativos Europeos es_ES
dc.description.references Lloret, J. (2013). Underwater Sensor Nodes and Networks. Sensors, 13(9), 11782-11796. doi:10.3390/s130911782 es_ES
dc.description.references Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: research challenges. Ad Hoc Networks, 3(3), 257-279. doi:10.1016/j.adhoc.2005.01.004 es_ES
dc.description.references Santos, R., Orozco, J., Micheletto, M., Ochoa, S., Meseguer, R., Millan, P., & Molina, C. (2017). Real-Time Communication Support for Underwater Acoustic Sensor Networks. Sensors, 17(7), 1629. doi:10.3390/s17071629 es_ES
dc.description.references Das, A. P., & Thampi, S. M. (2017). Simulation Tools for Underwater Sensor Networks: A Survey. Network Protocols and Algorithms, 8(4), 41. doi:10.5296/npa.v8i4.10471 es_ES
dc.description.references Kawahara, R., Nobuhara, S., & Matsuyama, T. (2016). Dynamic 3D capture of swimming fish by underwater active stereo. Methods in Oceanography, 17, 118-137. doi:10.1016/j.mio.2016.08.002 es_ES
dc.description.references Schaner, T., Fox, M. G., & Taraborelli, A. C. (2009). An inexpensive system for underwater video surveys of demersal fishes. Journal of Great Lakes Research, 35(2), 317-319. doi:10.1016/j.jglr.2008.12.003 es_ES
dc.description.references Shinoda, R., Wu, H., Murata, M., Ohnuki, H., Yoshiura, Y., & Endo, H. (2017). Development of an optical communication type biosensor for real-time monitoring of fish stress. Sensors and Actuators B: Chemical, 247, 765-773. doi:10.1016/j.snb.2017.03.034 es_ES
dc.description.references Chen, Z., Zhang, Z., Dai, F., Bu, Y., & Wang, H. (2017). Monocular Vision-Based Underwater Object Detection. Sensors, 17(8), 1784. doi:10.3390/s17081784 es_ES
dc.description.references Saberioon, M. M., & Cisar, P. (2016). Automated multiple fish tracking in three-Dimension using a Structured Light Sensor. Computers and Electronics in Agriculture, 121, 215-221. doi:10.1016/j.compag.2015.12.014 es_ES
dc.description.references Pais, M. P., & Cabral, H. N. (2017). Fish behaviour effects on the accuracy and precision of underwater visual census surveys. A virtual ecologist approach using an individual-based model. Ecological Modelling, 346, 58-69. doi:10.1016/j.ecolmodel.2016.12.011 es_ES
dc.description.references Burget, P., & Pachner, D. (2005). FISH FARM AUTOMATION. IFAC Proceedings Volumes, 38(1), 137-142. doi:10.3182/20050703-6-cz-1902.02113 es_ES
dc.description.references Simon, Y., Levavi-Sivan, B., Cahaner, A., Hulata, G., Antler, A., Rozenfeld, L., & Halachmi, I. (2017). A behavioural sensor for fish stress. Aquacultural Engineering, 77, 107-111. doi:10.1016/j.aquaeng.2017.04.001 es_ES
dc.description.references Petreman, I. C., Jones, N. E., & Milne, S. W. (2014). Observer bias and subsampling efficiencies for estimating the number of migrating fish in rivers using Dual-frequency IDentification SONar (DIDSON). Fisheries Research, 155, 160-167. doi:10.1016/j.fishres.2014.03.001 es_ES
dc.description.references Garcia, M., Sendra, S., Lloret, G., & Lloret, J. (2011). Monitoring and control sensor system for fish feeding in marine fish farms. IET Communications, 5(12), 1682-1690. doi:10.1049/iet-com.2010.0654 es_ES
dc.description.references Lloret, J., Garcia, M., Sendra, S., & Lloret, G. (2014). An underwater wireless group-based sensor network for marine fish farms sustainability monitoring. Telecommunication Systems, 60(1), 67-84. doi:10.1007/s11235-014-9922-3 es_ES
dc.description.references Bharamagoudra, M. R., Manvi, S. S., & Gonen, B. (2017). Event driven energy depth and channel aware routing for underwater acoustic sensor networks: Agent oriented clustering based approach. Computers & Electrical Engineering, 58, 1-19. doi:10.1016/j.compeleceng.2017.01.004 es_ES
dc.description.references Gallehdari, Z., Meskin, N., & Khorasani, K. (2017). Distributed reconfigurable control strategies for switching topology networked multi-agent systems. ISA Transactions, 71, 51-67. doi:10.1016/j.isatra.2017.06.008 es_ES
dc.description.references Jurdak, R., Elfes, A., Kusy, B., Tews, A., Hu, W., Hernandez, E., … Sikka, P. (2015). Autonomous surveillance for biosecurity. Trends in Biotechnology, 33(4), 201-207. doi:10.1016/j.tibtech.2015.01.003 es_ES
dc.description.references García-Magariño, I., & Plaza, I. (2015). FTS-SOCI: An agent-based framework for simulating teaching strategies with evolutions of sociograms. Simulation Modelling Practice and Theory, 57, 161-178. doi:10.1016/j.simpat.2015.07.003 es_ES
dc.description.references Cooke, S. J., Brownscombe, J. W., Raby, G. D., Broell, F., Hinch, S. G., Clark, T. D., & Semmens, J. M. (2016). Remote bioenergetics measurements in wild fish: Opportunities and challenges. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 202, 23-37. doi:10.1016/j.cbpa.2016.03.022 es_ES
dc.description.references García, M. R., Cabo, M. L., Herrera, J. R., Ramilo-Fernández, G., Alonso, A. A., & Balsa-Canto, E. (2017). Smart sensor to predict retail fresh fish quality under ice storage. Journal of Food Engineering, 197, 87-97. doi:10.1016/j.jfoodeng.2016.11.006 es_ES
dc.description.references Tušer, M., Frouzová, J., Balk, H., Muška, M., Mrkvička, T., & Kubečka, J. (2014). Evaluation of potential bias in observing fish with a DIDSON acoustic camera. Fisheries Research, 155, 114-121. doi:10.1016/j.fishres.2014.02.031 es_ES
dc.description.references Rakowitz, G., Tušer, M., Říha, M., Jůza, T., Balk, H., & Kubečka, J. (2012). Use of high-frequency imaging sonar (DIDSON) to observe fish behaviour towards a surface trawl. Fisheries Research, 123-124, 37-48. doi:10.1016/j.fishres.2011.11.018 es_ES
dc.description.references Cenek, M., & Franklin, M. (2017). An adaptable agent-based model for guiding multi-species Pacific salmon fisheries management within a SES framework. Ecological Modelling, 360, 132-149. doi:10.1016/j.ecolmodel.2017.06.024 es_ES
dc.description.references Gao, L., & Hailu, A. (2011). Evaluating the effects of area closure for recreational fishing in a coral reef ecosystem: The benefits of an integrated economic and biophysical modeling. Ecological Economics, 70(10), 1735-1745. doi:10.1016/j.ecolecon.2011.04.014 es_ES
dc.description.references Helbing, D., & Balietti, S. (2011). From social simulation to integrative system design. The European Physical Journal Special Topics, 195(1), 69-100. doi:10.1140/epjst/e2011-01402-7 es_ES
dc.description.references Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH Computer Graphics, 21(4), 25-34. doi:10.1145/37402.37406 es_ES
dc.description.references Beltran, R. S., Testa, J. W., & Burns, J. M. (2017). An agent-based bioenergetics model for predicting impacts of environmental change on a top marine predator, the Weddell seal. Ecological Modelling, 351, 36-50. doi:10.1016/j.ecolmodel.2017.02.002 es_ES
dc.description.references Berman, M., Nicolson, C., Kofinas, G., Tetlichi, J., & Martin, S. (2004). Adaptation and Sustainability in a Small Arctic Community : Results of an Agent-based Simulation Model. ARCTIC, 57(4). doi:10.14430/arctic517 es_ES
dc.description.references Kadir, H. A., & Arshad, M. R. (2015). Cooperative Multi Agent System for Ocean Observation System based on Consensus Algorithm. Procedia Computer Science, 76, 203-208. doi:10.1016/j.procs.2015.12.343 es_ES
dc.description.references Trygonis, V., Georgakarakos, S., Dagorn, L., & Brehmer, P. (2016). Spatiotemporal distribution of fish schools around drifting fish aggregating devices. Fisheries Research, 177, 39-49. doi:10.1016/j.fishres.2016.01.013 es_ES
dc.description.references De Kerckhove, D. T., Milne, S., & Shuter, B. J. (2015). Measuring fish school swimming speeds with two acoustic beams and determining the angle of the school detection. Fisheries Research, 172, 432-439. doi:10.1016/j.fishres.2015.08.001 es_ES
dc.description.references Source Code of the Agent-Based Simulator of Underwater Sensors for Measuring the Amount of Fishes Called ABS-FishCounthttp://dx.doi.org/10.17632/yzmt73x8j8.1 es_ES
dc.description.references Cossentino, M., Gaud, N., Hilaire, V., Galland, S., & Koukam, A. (2009). ASPECS: an agent-oriented software process for engineering complex systems. Autonomous Agents and Multi-Agent Systems, 20(2), 260-304. doi:10.1007/s10458-009-9099-4 es_ES
dc.description.references García-Magariño, I., Palacios-Navarro, G., & Lacuesta, R. (2017). TABSAOND: A technique for developing agent-based simulation apps and online tools with nondeterministic decisions. Simulation Modelling Practice and Theory, 77, 84-107. doi:10.1016/j.simpat.2017.05.006 es_ES
dc.description.references García-Magariño, I., Gómez-Rodríguez, A., González-Moreno, J. C., & Palacios-Navarro, G. (2015). PEABS: A Process for developing Efficient Agent-Based Simulators. Engineering Applications of Artificial Intelligence, 46, 104-112. doi:10.1016/j.engappai.2015.09.003 es_ES
dc.description.references Rosenthal, J. A. (1996). Qualitative Descriptors of Strength of Association and Effect Size. Journal of Social Service Research, 21(4), 37-59. doi:10.1300/j079v21n04_02 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem