- -

A Recombinant Potato virus Y Infectious Clone Tagged with the Rosea1 Visual Marker (PVY-Ros1) Facilitates the Analysis of Viral Infectivity and Allows the Production of Large Amounts of Anthocyanins in Plants

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Recombinant Potato virus Y Infectious Clone Tagged with the Rosea1 Visual Marker (PVY-Ros1) Facilitates the Analysis of Viral Infectivity and Allows the Production of Large Amounts of Anthocyanins in Plants

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cordero, Teresa es_ES
dc.contributor.author Mohamed, M.A. es_ES
dc.contributor.author Lopez Moya, J.J. es_ES
dc.contributor.author DAROS ARNAU, JOSE ANTONIO es_ES
dc.date.accessioned 2020-07-30T03:35:48Z
dc.date.available 2020-07-30T03:35:48Z
dc.date.issued 2017-04-06 es_ES
dc.identifier.issn 1664-302X es_ES
dc.identifier.uri http://hdl.handle.net/10251/148912
dc.description "This Document is Protected by copyright and was first published by Frontiers. All rights reserved. It is reproduced with permission." es_ES
dc.description.abstract [EN] Potato virus Y (PVY) is a major threat to the cultivation of potato and other solanaceous plants. By inserting a cDNA coding for the Antirrhinum majus Rosea1 transcription factor into a PVY infectious clone, we created a biotechnological tool (PVY-Ros1) that allows infection by this relevant plant virus to be tracked by the naked eye with no need for complex instrumentation. Rosea1 is an MYB-type transcription factor whose expression activates the biosynthesis of anthocyanin pigments in a dose-specific and cell-autonomous manner. Our experiments showed that the mechanical inoculation of solanaceous plants with PVY-Ros1 induced the formation of red infection foci in inoculated tissue and solid dark red pigmentation in systemically infected tissue, which allows disease progression to be easily monitored. By using silver nanoparticles, a nanomaterial with exciting antimicrobial properties, we proved the benefits of PVY-Ros1 to analyze novel antiviral treatments in plants. PVY-Ros1 was also helpful for visually monitoring the virus transmission process by an aphid vector. Most importantly, the anthocyanin analysis of infected tobacco tissues demonstrated that PVY-Ros1 is an excellent biotechnological tool for molecular farming because it induces the accumulation of larger amounts of anthocyanins, antioxidant compounds of nutritional, pharmaceutical and industrial interest, than those that naturally accumulate in some fruits and vegetables well known for their high anthocyanin content. Hence these results support the notion that the virus-mediated expression of regulatory factors and enzymes in plants facilitates easy quick plant metabolism engineering. es_ES
dc.description.sponsorship This research was supported by grants BIO2014-54269-R and AGL2013-49919-EXP to J-AD and AGL2013-42537-R to J-JL-M from the Ministerio de Economia y Competitividad (MINECO, co-financed FEDER funds), Spain. MM was supported by the Erasmus Mundus Scholarship-ACTION 2 WELCOME program of the European Commission. Research in CRAG is supported in part by CERCA (Generalitat de Catalunya) and by "Severo Ochoa Programme for Centres of Excellence in R&D" 2016-2019 (SEV-2015-0533). es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Microbiology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Potato virus es_ES
dc.subject Aanthocyanin es_ES
dc.subject Silver nanoparticles es_ES
dc.subject Aphid vector es_ES
dc.subject Molecular farming es_ES
dc.title A Recombinant Potato virus Y Infectious Clone Tagged with the Rosea1 Visual Marker (PVY-Ros1) Facilitates the Analysis of Viral Infectivity and Allows the Production of Large Amounts of Anthocyanins in Plants es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fmicb.2017.00611 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2015-0533/ES/AGR-CONSORCI CSIC-IRTA-UAB CENTRE DE RECERCA EN AGRIGENOMICA (CRAG)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2014-54269-R/ES/INSTRUMENTOS BIOTECNOLOGICOS DERIVADOS DE VIRUS DE PLANTAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2013-42537-R/ES/INFECCIONES MIXTAS DE VIRUS DE PLANTAS QUE CAUSAN ENFERMEDADES EN COSECHAS: EFECTOS SOBRE LA TRANSMISION POR VECTORES Y LA RESISTENCIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2013-49919-EXP/ES/DETECCION DE PATOGENOS Y BIOCOMPUTACION MEDIANTE CIRCUITOS REGULADORES EN PLANTAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Cordero, T.; Mohamed, M.; Lopez Moya, J.; Daros Arnau, JA. (2017). A Recombinant Potato virus Y Infectious Clone Tagged with the Rosea1 Visual Marker (PVY-Ros1) Facilitates the Analysis of Viral Infectivity and Allows the Production of Large Amounts of Anthocyanins in Plants. Frontiers in Microbiology. 8:1-11. https://doi.org/10.3389/fmicb.2017.00611 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fmicb.2017.00611 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.identifier.pmid 28428782 es_ES
dc.identifier.pmcid PMC5382215 es_ES
dc.relation.pasarela S\356536 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat de Catalunya es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Abdel-Hafez, S. I. I., Nafady, N. A., Abdel-Rahim, I. R., Shaltout, A. M., Daròs, J.-A., & Mohamed, M. A. (2016). Assessment of protein silver nanoparticles toxicity against pathogenic Alternaria solani. 3 Biotech, 6(2). doi:10.1007/s13205-016-0515-6 es_ES
dc.description.references Allan, A. C., Hellens, R. P., & Laing, W. A. (2008). MYB transcription factors that colour our fruit. Trends in Plant Science, 13(3), 99-102. doi:10.1016/j.tplants.2007.11.012 es_ES
dc.description.references An, C. H., Lee, K.-W., Lee, S.-H., Jeong, Y. J., Woo, S. G., Chun, H., … Kim, C. Y. (2015). Heterologous expression of IbMYB1a by different promoters exhibits different patterns of anthocyanin accumulation in tobacco. Plant Physiology and Biochemistry, 89, 1-10. doi:10.1016/j.plaphy.2015.02.002 es_ES
dc.description.references Atreya, P. L., Lopez-Moya, J. J., Chu, M., Atreya, C. D., & Pirone, T. P. (1995). Mutational analysis of the coat protein N-terminal amino acids involved in potyvirus transmission by aphids. Journal of General Virology, 76(2), 265-270. doi:10.1099/0022-1317-76-2-265 es_ES
dc.description.references Baulcombe, D. C., Chapman, S., & Cruz, S. (1995). Jellyfish green fluorescent protein as a reporter for virus infections. The Plant Journal, 7(6), 1045-1053. doi:10.1046/j.1365-313x.1995.07061045.x es_ES
dc.description.references Bedoya, L., Martínez, F., Rubio, L., & Daròs, J.-A. (2010). Simultaneous equimolar expression of multiple proteins in plants from a disarmed potyvirus vector. Journal of Biotechnology, 150(2), 268-275. doi:10.1016/j.jbiotec.2010.08.006 es_ES
dc.description.references Bedoya, L. C., & Daròs, J.-A. (2010). Stability of Tobacco etch virus infectious clones in plasmid vectors. Virus Research, 149(2), 234-240. doi:10.1016/j.virusres.2010.02.004 es_ES
dc.description.references Bedoya, L. C., Martínez, F., Orzáez, D., & Daròs, J.-A. (2012). Visual Tracking of Plant Virus Infection and Movement Using a Reporter MYB Transcription Factor That Activates Anthocyanin Biosynthesis. Plant Physiology, 158(3), 1130-1138. doi:10.1104/pp.111.192922 es_ES
dc.description.references Boyer, J.-C., & Haenni, A.-L. (1994). Infectious Transcripts and cDNA Clones of RNA Viruses. Virology, 198(2), 415-426. doi:10.1006/viro.1994.1053 es_ES
dc.description.references Chalfie, M., Tu, Y., Euskirchen, G., Ward, W., & Prasher, D. (1994). Green fluorescent protein as a marker for gene expression. Science, 263(5148), 802-805. doi:10.1126/science.8303295 es_ES
dc.description.references Cordero, T., Cerdán, L., Carbonell, A., Katsarou, K., Kalantidis, K., & Daròs, J.-A. (2017). Dicer-Like 4 Is Involved in Restricting the Systemic Movement of Zucchini yellow mosaic virus in Nicotiana benthamiana. Molecular Plant-Microbe Interactions®, 30(1), 63-71. doi:10.1094/mpmi-11-16-0239-r es_ES
dc.description.references Dolja, V. V., McBride, H. J., & Carrington, J. C. (1992). Tagging of plant potyvirus replication and movement by insertion of beta-glucuronidase into the viral polyprotein. Proceedings of the National Academy of Sciences, 89(21), 10208-10212. doi:10.1073/pnas.89.21.10208 es_ES
dc.description.references Elbeshehy, E. K. F., Elazzazy, A. M., & Aggelis, G. (2015). Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Frontiers in Microbiology, 6. doi:10.3389/fmicb.2015.00453 es_ES
dc.description.references Engler, C., & Marillonnet, S. (2013). Golden Gate Cloning. Methods in Molecular Biology, 119-131. doi:10.1007/978-1-62703-764-8_9 es_ES
dc.description.references FRENCH, R., JANDA, M., & AHLQUIST, P. (1986). Bacterial Gene Inserted in an Engineered RNA Virus: Efficient Expression in Monocotyledonous Plant Cells. Science, 231(4743), 1294-1297. doi:10.1126/science.231.4743.1294 es_ES
dc.description.references Gibbs, A., & Ohshima, K. (2010). Potyviruses and the Digital Revolution. Annual Review of Phytopathology, 48(1), 205-223. doi:10.1146/annurev-phyto-073009-114404 es_ES
dc.description.references Johansen, I. E. (1996). Intron insertion facilitates amplification of cloned virus cDNA in Escherichia coli while biological activity is reestablished after transcription in vivo. Proceedings of the National Academy of Sciences, 93(22), 12400-12405. doi:10.1073/pnas.93.22.12400 es_ES
dc.description.references Joshi, R. L., Joshi, V., & Ow, D. W. (1990). BSMV genome mediated expression of a foreign gene in dicot and monocot plant cells. The EMBO Journal, 9(9), 2663-2669. doi:10.1002/j.1460-2075.1990.tb07451.x es_ES
dc.description.references Karasev, A. V., & Gray, S. M. (2013). Continuous and Emerging Challenges of Potato virus Y in Potato. Annual Review of Phytopathology, 51(1), 571-586. doi:10.1146/annurev-phyto-082712-102332 es_ES
dc.description.references Kelloniemi, J., Mäkinen, K., & Valkonen, J. P. T. (2008). Three heterologous proteins simultaneously expressed from a chimeric potyvirus: Infectivity, stability and the correlation of genome and virion lengths. Virus Research, 135(2), 282-291. doi:10.1016/j.virusres.2008.04.006 es_ES
dc.description.references Krenz, B., Bronikowski, A., Lu, X., Ziebell, H., Thompson, J. R., & Perry, K. L. (2015). Visual monitoring of Cucumber mosaic virus infection in Nicotiana benthamiana following transmission by the aphid vector Myzus persicae. Journal of General Virology, 96(9), 2904-2912. doi:10.1099/vir.0.000185 es_ES
dc.description.references Lara, H. H., Ixtepan-Turrent, L., Garza Treviño, E. N., & Singh, D. K. (2011). Use of silver nanoparticles increased inhibition of cell-associated HIV-1 infection by neutralizing antibodies developed against HIV-1 envelope proteins. Journal of Nanobiotechnology, 9(1), 38. doi:10.1186/1477-3155-9-38 es_ES
dc.description.references López-Moya, J. J., & Garcı́a, J. A. (2000). Construction of a stable and highly infectious intron-containing cDNA clone of plum pox potyvirus and its use to infect plants by particle bombardment. Virus Research, 68(2), 99-107. doi:10.1016/s0168-1702(00)00161-1 es_ES
dc.description.references Majer, E., Llorente, B., Rodríguez-Concepción, M., & Daròs, J.-A. (2017). Rewiring carotenoid biosynthesis in plants using a viral vector. Scientific Reports, 7(1). doi:10.1038/srep41645 es_ES
dc.description.references Marillonnet, S., Thoeringer, C., Kandzia, R., Klimyuk, V., & Gleba, Y. (2005). Systemic Agrobacterium tumefaciens–mediated transfection of viral replicons for efficient transient expression in plants. Nature Biotechnology, 23(6), 718-723. doi:10.1038/nbt1094 es_ES
dc.description.references Mishra, S., & Singh, H. B. (2014). Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture. Applied Microbiology and Biotechnology, 99(3), 1097-1107. doi:10.1007/s00253-014-6296-0 es_ES
dc.description.references Nie, B., Singh, M., Sullivan, A., Singh, R. P., Xie, C., & Nie, X. (2011). Recognition and Molecular Discrimination of Severe and Mild PVYO Variants of Potato virus Y in Potato in New Brunswick, Canada. Plant Disease, 95(2), 113-119. doi:10.1094/pdis-04-10-0257 es_ES
dc.description.references Olspert, A., Chung, B. Y., Atkins, J. F., Carr, J. P., & Firth, A. E. (2015). Transcriptional slippage in the positive‐sense RNA virus family Potyviridae. EMBO reports, 16(8), 995-1004. doi:10.15252/embr.201540509 es_ES
dc.description.references Passeri, V., Koes, R., & Quattrocchio, F. M. (2016). New Challenges for the Design of High Value Plant Products: Stabilization of Anthocyanins in Plant Vacuoles. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00153 es_ES
dc.description.references Quenouille, J., Vassilakos, N., & Moury, B. (2013). Potato virus Y: a major crop pathogen that has provided major insights into the evolution of viral pathogenicity. Molecular Plant Pathology, 14(5), 439-452. doi:10.1111/mpp.12024 es_ES
dc.description.references Revers, F., & García, J. A. (2015). Molecular Biology of Potyviruses. Advances in Virus Research, 101-199. doi:10.1016/bs.aivir.2014.11.006 es_ES
dc.description.references Rodamilans, B., Valli, A., Mingot, A., San León, D., Baulcombe, D., López-Moya, J. J., & García, J. A. (2015). RNA Polymerase Slippage as a Mechanism for the Production of Frameshift Gene Products in Plant Viruses of the Potyviridae Family. Journal of Virology, 89(13), 6965-6967. doi:10.1128/jvi.00337-15 es_ES
dc.description.references Rodriguez, E. A., Campbell, R. E., Lin, J. Y., Lin, M. Z., Miyawaki, A., Palmer, A. E., … Tsien, R. Y. (2017). The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins. Trends in Biochemical Sciences, 42(2), 111-129. doi:10.1016/j.tibs.2016.09.010 es_ES
dc.description.references Rupar, M., Faurez, F., Tribodet, M., Gutiérrez-Aguirre, I., Delaunay, A., Glais, L., … Ravnikar, M. (2015). Fluorescently Tagged Potato virus Y: A Versatile Tool for Functional Analysis of Plant-Virus Interactions. Molecular Plant-Microbe Interactions®, 28(7), 739-750. doi:10.1094/mpmi-07-14-0218-ta es_ES
dc.description.references Saxena, P., Hsieh, Y.-C., Alvarado, V. Y., Sainsbury, F., Saunders, K., Lomonossoff, G. P., & Scholthof, H. B. (2010). Improved foreign gene expression in plants using a virus-encoded suppressor of RNA silencing modified to be developmentally harmless. Plant Biotechnology Journal, 9(6), 703-712. doi:10.1111/j.1467-7652.2010.00574.x es_ES
dc.description.references SCHOLTHOF, K.-B. G., ADKINS, S., CZOSNEK, H., PALUKAITIS, P., JACQUOT, E., HOHN, T., … FOSTER, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12(9), 938-954. doi:10.1111/j.1364-3703.2011.00752.x es_ES
dc.description.references Thole, V., Worland, B., Snape, J. W., & Vain, P. (2007). The pCLEAN Dual Binary Vector System for Agrobacterium-Mediated Plant Transformation. Plant Physiology, 145(4), 1211-1219. doi:10.1104/pp.107.108563 es_ES
dc.description.references Tilsner, J., & Oparka, K. J. (2010). Tracking the green invaders: advances in imaging virus infection in plants. Biochemical Journal, 430(1), 21-37. doi:10.1042/bj20100372 es_ES
dc.description.references Zhang, Y., Butelli, E., & Martin, C. (2014). Engineering anthocyanin biosynthesis in plants. Current Opinion in Plant Biology, 19, 81-90. doi:10.1016/j.pbi.2014.05.011 es_ES
dc.description.references Zhao, X., Yuan, Z., Fang, Y., Yin, Y., & Feng, L. (2012). Characterization and evaluation of major anthocyanins in pomegranate (Punica granatum L.) peel of different cultivars and their development phases. European Food Research and Technology, 236(1), 109-117. doi:10.1007/s00217-012-1869-6 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem