- -

Low-cost genotyping method based on allele-specific recombinase polymerase amplification and colorimetric microarray detection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Low-cost genotyping method based on allele-specific recombinase polymerase amplification and colorimetric microarray detection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author YAMANAKA, ERIC-SEITI es_ES
dc.contributor.author Tortajada-Genaro, Luis Antonio es_ES
dc.contributor.author Maquieira, A. es_ES
dc.date.accessioned 2020-07-31T03:31:30Z
dc.date.available 2020-07-31T03:31:30Z
dc.date.issued 2017-05 es_ES
dc.identifier.issn 0026-3672 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149083
dc.description.abstract [EN] The costs of current genotyping methods limit their application to personalized therapy. The authors describe an alternative approach for the detection of single-point-polymorphisms using recombinant polymerase amplification as an allele-specific technique. The use of short and chemically modified primers and locked nucleic acids allowed for a selective isothermal amplification of wild-type or mutant variants at 37 °C within 40 min. An amplification chip platform containing 100 wells was manufactured with a 3D printer and using thermoplastic polylactic acid. The platform reduces reagent consumption and allows parallelization. As a proof of concept, the method was applied to the genotyping of four SNPs that are related to the treatment of tobacco addiction. The target polymorphisms included rs4680 (COMT gene), rs1799971 (OPRM1 gene), rs1800497 (ANKK1 gene), and rs16969968 (CHRNA5 gene). The genotype populations can be well discriminated. es_ES
dc.description.sponsorship The authors acknowledge the financial support received from the Generalitat Valenciana (GVA-PROMETEOII/2014/040 project and GRISOLIA/2014/024 PhD grant) and the Spanish Ministry of Economy and Competitiveness (MINECO CTQ2013-45875-R project). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Microchimica Acta es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Pharmacogenomics es_ES
dc.subject SNP genotyping es_ES
dc.subject Isothermal amplification es_ES
dc.subject Micro-well plate es_ES
dc.subject Microchip es_ES
dc.subject Tobacco addiction es_ES
dc.subject 3D printer es_ES
dc.subject COMT gene es_ES
dc.subject OPRM1 gene es_ES
dc.subject ANKK1 gene es_ES
dc.subject CHRNA5 gene es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Low-cost genotyping method based on allele-specific recombinase polymerase amplification and colorimetric microarray detection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00604-017-2144-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2013-45875-R/ES/BIOSENSADO EN SOPORTES INTERACTIVOS CON PROPIEDADES INTERFEROMETRICAS PARA APLICACIONES CLINICAS. DEMOSTRACION EN FARMACOGENETICA Y ALERGIAS MEDICAMENTOSAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIA%2F2014%2F024/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F040/ES/Estudio de estrategias fisico-químicas para el desarrollo de biosensores interferométricos en soportes interactivos de aplicación en clínica/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Yamanaka, E.; Tortajada-Genaro, LA.; Maquieira, A. (2017). Low-cost genotyping method based on allele-specific recombinase polymerase amplification and colorimetric microarray detection. Microchimica Acta. 184(5):1453-1462. https://doi.org/10.1007/s00604-017-2144-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00604-017-2144-0 es_ES
dc.description.upvformatpinicio 1453 es_ES
dc.description.upvformatpfin 1462 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 184 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\336346 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Manolio TA, Chisholm RL, Ozenberger B, Roden DM, Williams MS, Wilson R et al (2013) Implementing genomic medicine in the clinic: the future is here. Genitourin Med 15:258–267 es_ES
dc.description.references Scott SA (2013) Clinical pharmacogenomics: opportunities and challenges at point-of-care. Clin Pharmacol Ther 93:33 es_ES
dc.description.references Limaye N (2013) Pharmacogenomics, Theranostics and personalized medicine-the complexities of clinical trials: challenges in the developing world. Appl Transl Genomics 2:17–21 es_ES
dc.description.references Abul-Husn NS, Owusu Obeng A, Sanderson SC, Gottesman O, Scott SA (2014) Implementation and utilization of genetic testing in personalized medicine. Pharmacogenomics Pers Med 7:227–240 es_ES
dc.description.references Knez K, Spasic D, Janssen KP, Lammertyn J (2014) Emerging technologies for hybridization based single nucleotide polymorphism detection. Analyst 139:353–370 es_ES
dc.description.references Shen W, Tian Y, Ran T, Gao Z (2015) Genotyping and quantification techniques for single-nucleotide polymorphisms. TrAC Trends Anal Chem 69:1–13 es_ES
dc.description.references Milbury CA, Li J, Makrigiorgos GM (2009) PCR-based methods for the enrichment of minority alleles and mutations. Clin Chem 55:632–640 es_ES
dc.description.references Asari M, Watanabe S, Matsubara K, Shiono H, Shimizu K (2009) Single nucleotide polymorphism genotyping by mini-primer allele-specific amplification with universal reporter primers for identification of degraded DNA. Anal Biochem 386:85–90 es_ES
dc.description.references Taira C, Matsuda K, Yamaguchi A, Sueki A, Koeda H, Takagi F, Kobayashi Y, Sugano M, Honda T (2013) Novel high-speed droplet-allele specific-polymerase chain reaction: application in the rapid genotyping of single nucleotide polymorphisms. Clin Chim Acta 424:39–46 es_ES
dc.description.references Tortajada-Genaro LA, Mena S, Niñoles R, Puigmule M, Viladevall L, Maquieira A (2016) Genotyping of single nucleotide polymorphisms related to attention-deficit hyperactivity disorder. Anal Bioanal Chem 408:2339–2345 es_ES
dc.description.references Woolley CF, Hayes MA (2014) Emerging technologies for biomedical analysis. Analyst 139:2277–2288 es_ES
dc.description.references Craw P, Balachandran W (2012) Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab Chip 12:2469–2486 es_ES
dc.description.references Zhang L, Zhang Y, Wang C, Feng Q, Fan F, Zhang G, Kang X, Qin X, Sun J, Li Y, Jiang X (2014) Integrated microcapillary for sample-to-answer nucleic acid pretreatment, amplification, and detection. Anal Chem 86:10461–10466 es_ES
dc.description.references Chen F, Zhao Y, Fan C, Zhao Y (2015) Mismatch extension of DNA polymerases and high-accuracy single nucleotide polymorphism diagnostics by gold nanoparticle-improved isothermal amplification. Anal Chem 87:8718–8723 es_ES
dc.description.references Li J, Macdonald J (2015) Advances in isothermal amplification: novel strategies inspired by biological processes. Biosens Bioelectron 64:196–211 es_ES
dc.description.references Santiago-Felipe S, Tortajada-Genaro LA, Morais S, Puchades R, Maquieira A (2014) One-pot isothermal DNA amplification–hybridisation and detection by a disc-based method. Sens Actuator B-Chem 204:273–281 es_ES
dc.description.references Santiago-Felipe S, Tortajada-Genaro LA, Puchades R, Maquieira Á (2016) Parallel solid-phase isothermal amplification and detection of multiple DNA targets in microliter-sized wells of a digital versatile disc. Microchim Acta 183:1195–1202 es_ES
dc.description.references Tortajada-Genaro LA, Santiago-Felipe S, Amasia M, Russom A, Maquieira A (2015) Isothermal solid-phase recombinase polymerase amplification on microfluidic digital versatile discs (DVDs). RSCAdv 5:29987–29995 es_ES
dc.description.references Li Z, Liu Y, Wei Q, Liu Y, Liu W, Zhang X, Yu Y (2016) Picoliter well Array Chip-based digital recombinase polymerase amplification for absolute quantification of nucleic acids. PLoS One 11:e0153359 es_ES
dc.description.references Daher RK, Stewart G, Boissinot M, Boudreau DK, Bergeron MG (2015) Influence of sequence mismatches on the specificity of recombinase polymerase amplification technology. Mol Cell Probes 29:116–121 es_ES
dc.description.references Shin Y, Perera AP, Kim KW, Park MK (2013) Real-time, label-free isothermal solid-phase amplification/detection (ISAD) device for rapid detection of genetic alteration in cancers. Lab Chip 13:2106–2114 es_ES
dc.description.references NgePN RCI, Woolley AT (2013) Advances in microfluidic materials, functions, integration, and applications. Chem Rev 113:2550–2583 es_ES
dc.description.references Bhattacharjee N, Urrios A, Kang S, Folch A (2016) The upcoming 3D-printing revolution in microfluidics. Lab Chip 16:1720–1742 es_ES
dc.description.references Waheed S, Cabot JM, Macdonald NP, Lewis T, Guijt RM, Paull B, Breadmore MC (2016) 3D printed microfluidic devices: enablers and barriers. Lab Chip 16:1993–2013 es_ES
dc.description.references Bierut LJ, Madden PA, Breslau N, Johnson EO, Hatsukami D, Pomerleau OF, Swan GE, Rutter J, Bertelsen S, Fox L, Fugman D, Goate AM, Hinrichs AL, Konvicka K, Martin NG, Montgomery GW, Saccone NL, Saccone SF, Wang JC, Chase GA, Rice JP, Ballinger DG (2007) Novel genes identified in a high-density genome wide association study for nicotine dependence. Hum MolGen 16:24–35 es_ES
dc.description.references Carpenter MJ, Jardin BF, Burris JL, Mathew AR, Schnoll RA, Rigotti NA, Cummings KM (2013) Clinical strategies to enhance the efficacy of nicotine replacement therapy for smoking cessation: a review of the literature. Drugs 73:407–426 es_ES
dc.description.references Moody C, Newell H, Viljoen H (2016) FA mathematical model of recombinase polymerase amplification under continuously stirred conditions. Biochem Eng J 112:193–201 es_ES
dc.description.references Dimitrov RA, Zuker M (2004) Prediction of hybridization and melting for double-stranded nucleic acids. Biophys J 87:215–226 es_ES
dc.description.references Zhang C, Xing D (2007) Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends. Nucleic Acids Res 35:4223–4237 es_ES
dc.description.references Liu B, Huang PJJ, Zhang X, Wang F, Pautler R, IpACF LJ (2013) Parts-per-million of polyethylene glycol as a non-interfering blocking agent for homogeneous biosensor development. Anal Chem 85:10045–10050 es_ES
dc.description.references Wu J, Kodzius R, Cao W, Wen W (2014) Extraction, amplification and detection of DNA in microfluidic chip-based assays. Microchim Acta 181:1611–1631 es_ES
dc.description.references Li J, Wang L, Mamon H, Kulke MH, Berbeco R, Makrigiorgos GM (2008) Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing. Nat Med 14:579–584 es_ES
dc.description.references Shen R, Fan JB, Campbell D, Chang W, Chen J, Doucet D, Yeakley J, Bibikova M, Garcia EW, McBride C, Steemers F, Garcia F, Kermani BG, Gunderson K, Oliphant A (2005) High-throughput SNP genotyping on universal bead arrays. Mut Res Fund Mol M 573:70–82 es_ES
dc.description.references David SP, Strong DR, Leventhal AM, Lancaster MA, McGeary JE, Munafò MR, Bergen AW, Swan GE, Benowitz NL, Tyndale RF, Conti DV, Brown RA, Lerman C, Niaura R (2013) Influence of a dopamine pathway additive genetic efficacy score on smoking cessation: results from two randomized clinical trials of bupropion. Addiction 108:2202–2211 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem