- -

Chromatin-associated regulation of sorbitol synthesis in flower buds of peach

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Chromatin-associated regulation of sorbitol synthesis in flower buds of peach

Show simple item record

Files in this item

dc.contributor.author Lloret, Alba es_ES
dc.contributor.author Martinez Fuentes, Amparo es_ES
dc.contributor.author Agustí Fonfría, Manuel es_ES
dc.contributor.author Badenes, Maria Luisa es_ES
dc.contributor.author Rios, Gabino es_ES
dc.date.accessioned 2020-07-31T03:31:41Z
dc.date.available 2020-07-31T03:31:41Z
dc.date.issued 2017-11 es_ES
dc.identifier.issn 0167-4412 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149088
dc.description.abstract [EN] Key message PpeS6PDH gene is postulated to mediate sorbitol synthesis in flower buds of peach concomitantly with specific chromatin modifications. Abstract Perennial plants have evolved an adaptive mechanism involving protection of meristems within specialized structures named buds in order to survive low temperatures and water deprivation during winter. A seasonal period of dormancy further improves tolerance of buds to environmental stresses through specific mechanisms poorly known at the molecular level. We have shown that peach PpeS6PDH gene is down-regulated in flower buds after dormancy release, concomitantly with changes in the methylation level at specific lysine residues of histone H3 (H3K27 and H3K4) in the chromatin around the translation start site of the gene. PpeS6PDH encodes a NADPH-dependent sorbitol-6-phosphate dehydrogenase, the key enzyme for biosynthesis of sorbitol. Consistently, sorbitol accumulates in dormant buds showing higher PpeS6PDH expression. Moreover, PpeS6PDH gene expression is affected by cold and water deficit stress. Particularly, its expression is up-regulated by low temperature in buds and leaves, whereas desiccation treatment induces PpeS6PDH in buds and represses the gene in leaves. These data reveal the concurrent participation of chromatin modification mechanisms, transcriptional regulation of PpeS6PDH and sorbitol accumulation in flower buds of peach. In addition to its role as a major translocatable photosynthate in Rosaceae species, sorbitol is a widespread compatible solute and cryoprotectant, which suggests its participation in tolerance to environmental stresses in flower buds of peach. es_ES
dc.description.sponsorship This work was funded by the Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA)-FEDER (RF2013-00043-C02-02) and the Ministry of Science and Innovation of Spain (AGL2010-20595). AL was funded by a fellowship co-financed by the European Social Fund and the Instituto Valenciano de Investigaciones Agrarias (IVIA). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Plant Molecular Biology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Abiotic stress es_ES
dc.subject Bud dormancy es_ES
dc.subject Chromatin es_ES
dc.subject Prunus persica (peach) es_ES
dc.subject Sorbitol-6-phosphate dehydrogenase (S6PDH) es_ES
dc.subject Aldose-6-phosphate reductase (Ald6PRase) es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title Chromatin-associated regulation of sorbitol synthesis in flower buds of peach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11103-017-0669-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RF2013-00043-C02-02/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2010-20595/ES/PROGRAMAS DE MEJORA DEL ALBARICOQUERO Y MELOCOTONERO PARA LA OBTENCION Y SELECCION DE NUEVAS VARIEDADES DE ALTA CALIDAD. DESARROLLO DE HERRAMIENTAS GENETICAS Y GENOMICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.description.bibliographicCitation Lloret, A.; Martinez Fuentes, A.; Agustí Fonfría, M.; Badenes, ML.; Rios, G. (2017). Chromatin-associated regulation of sorbitol synthesis in flower buds of peach. Plant Molecular Biology. 95(4-5):507-517. https://doi.org/10.1007/s11103-017-0669-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11103-017-0669-6 es_ES
dc.description.upvformatpinicio 507 es_ES
dc.description.upvformatpfin 517 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 95 es_ES
dc.description.issue 4-5 es_ES
dc.relation.pasarela S\355524 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Institut Valencià d'Investigacions Agràries es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. doi: 10.1158/0008-5472.CAN-04-0496 es_ES
dc.description.references Bai S, Saito T, Ito A et al (2016) Small RNA and PARE sequencing in flower bud reveal the involvement of sRNAs in endodormancy release of Japanese pear (Pyrus pyrifolia ‘Kosui’). BMC Genomics 17:230. doi: 10.1186/s12864-016-2514-8 es_ES
dc.description.references Bielenberg DG, Wang Y, Li Z et al (2008) Sequencing and annotation of the evergrowing locus in peach (Prunus persica [L.] Batsch) reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4:495–507. doi: 10.1007/s11295-007-0126-9 es_ES
dc.description.references Bieleski RL (1969) Accumulation and translocation of sorbitol in apple phloem. Aust J Biol Sci 22:611–620. doi: 10.1071/BI9690611 es_ES
dc.description.references Bieleski RL (1982) Sugar alcohols. In: Loewus F, Tanner W (eds) Encyclopedia of plant physiology, new series 13A. Springer-Verlag, Berlin, pp 158–192 es_ES
dc.description.references Bortiri E, Oh SH, Gao FY, Potter D (2002) The phylogenetic utility of nucleotide sequences of sorbitol 6-phosphate dehydrogenase in Prunus (Rosaceae). Am J Bot 89:1697–1708. doi: 10.3732/ajb.89.10.1697 es_ES
dc.description.references Chouard P (1960) Vernalization and its relations to dormancy. Annu Rev Plant Physiol 11:191–238. doi: 10.1146/annurev.pp.11.060160.001203 es_ES
dc.description.references Conde D, Le Gac AL, Perales M et al (2017) Chilling-responsive DEMETER-LIKE DNA demethylase mediates in poplar bud break. Plant Cell Environ 40:2236–2249. doi: 10.1111/pce.13019 es_ES
dc.description.references Couvillon GA, Erez A (1985) Influence of prolonged exposure to chilling temperatures on bud break and heat requirement for bloom of several fruit species. J Amer Soc Hort Sci 110:47–50 es_ES
dc.description.references de la Fuente L, Conesa A, Lloret A, Badenes ML, Ríos G (2015) Genome-wide changes in histone H3 lysine 27 trimethylation associated with bud dormancy release in peach. Tree Genet Genomes 11:45. doi: 10.1007/s11295-015-0869-7 es_ES
dc.description.references Deng W, Buzas DM, Ying H et al (2013) Arabidopsis polycomb repressive complex 2 binding sites contain putative GAGA factor binding motifs within coding regions of genes. BMC Genomics 14:593. doi: 10.1186/1471-2164-14-593 es_ES
dc.description.references Escobar-Gutiérrez AJ, Gaudillère JP (1996) Distribution, metabolism and role of sorbitol in higher plants—A review. Agronomie 16:281–298. doi: 10.1051/agro:19960502 es_ES
dc.description.references Escobar-Gutiérrez AJ, Zipperlin B, Carbonne F, Moing A, Gaudillére JP (1998) Photosynthesis, carbon partitioning and metabolite content during drought stress in peach seedlings. Aust J Plant Physiol 25:197–205. doi: 10.1071/PP97121 es_ES
dc.description.references Eshghi S, Tafazoli E, Dokhani S, Rahemi M, Emam Y (2007) Changes in carbohydrate contents in shoot tips, leaves and roots of strawberry (Fragaria x ananassa Duch) during flower-bud differentiation. Sci Hortic 113:255–260. doi: 10.1016/j.scienta.2007.03.014 es_ES
dc.description.references Everard JD, Cantini C, Grumet R, Plummer J, Loescher WH (1997) Molecular cloning of mannose-6-phosphate reductase and its developmental expression in celery. Plant Physiol 113:1427–1435. doi: 10.1104/pp.113.4.1427 es_ES
dc.description.references Fennell A (2014) Genomics and functional genomics of winter low temperature tolerance in temperate fruit crops. Crit Rev Plant Sci 33:125–140. doi: 10.1080/07352689.2014.870410 es_ES
dc.description.references Figueroa CM, Iglesias AA (2010) Aldose-6-phosphate reductase from apple leaves: importance of the quaternary structure for enzyme activity. Biochimie 92:81–88. doi: 10.1016/j.biochi.2009.09.013 es_ES
dc.description.references Gao M, Tao R, Miura K, Dandekar AM, Sugiura A (2001) Transformation of Japanese persimmon (Diospyros kaki Thunb) with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase. Plant Sci 160:837–845. doi: 10.1016/S0168-9452(00)00458-1 es_ES
dc.description.references Grant CR, ap Rees T (1981) Sorbitol metabolism by apple seedlings. Phytochemistry 20:1505–1511. doi: 10.1016/S0031-9422(00)98521-2 es_ES
dc.description.references Hartman MD, Figueroa CM, Arias DG, Iglesias AA (2017) Inhibition of recombinant aldose-6-phosphate reductase from peach leaves by hexose-phosphates, inorganic phosphate and oxidants. Plant Cell Physiol 58:145–155. doi: 10.1093/pcp/pcw180 es_ES
dc.description.references Horvath DP, Anderson JV, Chao WS, Foley ME (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8:534–540. doi: 10.1016/j.tplants.2003.09.013 es_ES
dc.description.references Horvath DP, Sung S, Kim D, Chao W, Anderson J (2010) Characterization, expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge. Plant Mol Biol 73:169–179. doi: 10.1007/s11103-009-9596-5 es_ES
dc.description.references Hussain S, Niu Q, Yang F, Hussain N, Teng Y (2015) The possible role of chilling in floral and vegetative bud dormancy release in Pyrus pyrifolia. Biol Plant 59:726–734. doi: 10.1007/s10535-015-0547-5 es_ES
dc.description.references Hyndman D, Baumanb DR, Herediac VV, Penning TM (2003) The aldo-keto reductase superfamily homepage. Chem Biol Interact 143–144:621–631. doi: 10.1016/S0009-2797(02)00193-X es_ES
dc.description.references Ito A, Sakamoto D, Moriguchi T (2012) Carbohydrate metabolism and its possible roles in endodormancy transition in Japanese pear. Sci Hortic 144:187–194. doi: 10.1016/j.scienta.2012.07.009 es_ES
dc.description.references Ito A, Sugiura T, Sakamoto D, Moriguchi T (2013) Effects of dormancy progression and low-temperature response on changes in the sorbitol concentration in xylem sap of Japanese pear during winter season. Tree Physiol 33:398–408. doi: 10.1093/treephys/tpt021 es_ES
dc.description.references Jung S, Bassett C, Bielenberg DG et al (2015) A standard nomenclature for gene designation in the Rosaceae. Tree Genet Genomes 11:108. doi: 10.1007/s11295-015-0931-5 es_ES
dc.description.references Kanayama Y, Mori H, Imaseki H, Yamaki S (1992) Nucleotide sequence of a cDNA encoding NADP-sorbitol-6-phosphate dehydrogenase from apple. Plant Physiol 100:1607–1608 es_ES
dc.description.references Kanayama Y, Watanabe M, Moriguchi R, Deguchi M, Kanahama K, Yamaki S (2006) Effects of low temperature and abscisic acid on the expression of the sorbitol-6-phosphate dehydrogenase gene in apple leaves. J Japan Soc Hort Sci 75:20–25. doi: 10.2503/jjshs.75.20 es_ES
dc.description.references Kumar G, Rattan UK, Singh AK (2016a) Chilling-mediated DNA methylation changes during dormancy and its release reveal the importance of epigenetic regulation during winter dormancy in apple (Malus x domestica Borkh). PLoS ONE 11:e0149934. doi: 10.1371/journal.pone.0149934 es_ES
dc.description.references Kumar S, Stecher G, Tamura K (2016b) MEGA7: molecular evolutionary genetics analysis version 70 for bigger datasets. Mol Biol Evol 33:1870–1874. doi: 10.1093/molbev/msw054 es_ES
dc.description.references Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi: 10.1038/227680a0 es_ES
dc.description.references Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi: 10.1093/bioinformatics/btm404 es_ES
dc.description.references Leida C, Terol J, Martí G et al (2010) Identification of genes associated with bud dormancy release in Prunus persica by suppression subtractive hybridization. Tree Physiol 30:655–666. doi: 10.1093/treephys/tpq008 es_ES
dc.description.references Leida C, Conesa A, Llácer G, Badenes ML, Ríos G (2012) Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytol 193:67–80. doi: 10.1111/j.1469-8137.2011.03863.x es_ES
dc.description.references Liang D, Cui M, Wu S, Ma F-W (2012) Genomic structure, sub-cellular localization, and promoter analysis of the gene encoding sorbitol-6-phosphate dehydrogenase from apple. Plant Mol Biol Rep 30:904–914. doi: 10.1007/s11105-011-0409-z es_ES
dc.description.references Liu D, Ni J, Wu R, Teng Y (2013) High temperature alters sorbitol metabolism in Pyrus pyrifolia leaves and fruit flesh during late stages of fruit enlargement. J Am Soc Hortic Sci 138:443–451 es_ES
dc.description.references Lloret A, Conejero A, Leida C et al (2017) Dual regulation of water retention and cell growth by a stress-associated protein (SAP) gene in Prunus. Sci Rep 7:332. doi: 10.1038/s41598-017-00471-7 es_ES
dc.description.references Lo Bianco R, Rieger M, Sung S-JS (2000) Effect of drought on sorbitol and sucrose metabolism in sinks and sources of peach. Physiol Plant 108:71–78. doi: 10.1034/j.1399-3054.2000.108001071.x es_ES
dc.description.references Loescher WH (1987) Physiology and metabolism of sugar alcohols in higher-plants. Physiol Plant 70:553–557. doi: 10.1111/j.1399-3054.1987.tb02857.x es_ES
dc.description.references Loescher WH, Marlow GC, Kennedy RA (1982) Sorbitol metabolism and sink-source interconversions in developing apple leaves. Plant Physiol 70:335–339. doi: 10.1104/pp.70.2.335 es_ES
dc.description.references Marquat C, Vandamme M, Gendraud M, Pétel G (1999) Dormancy in vegetative buds of peach: relation between carbohydrate absorption potentials and carbohydrate concentration in the bud during dormancy and its release. Sci Hortic 79:151–162. doi: 10.1016/S0304-4238(98)00203-9 es_ES
dc.description.references Niu Q, Li J, Cai D et al (2016) Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear (Pyrus pyrifolia white pear group) flower bud. J Exp Bot 67:239–257. doi: 10.1093/jxb/erv454 es_ES
dc.description.references Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515. doi: 10.1023/B:BILE.0000019559.84305.47 es_ES
dc.description.references Ríos G, Leida C, Conejero A, Badenes ML (2014) Epigenetic regulation of bud dormancy events in perennial plants. Front Plant Sci 5:247. doi: 10.3389/fpls.2014.00247 es_ES
dc.description.references Saito T, Bai S, Imai T, Ito A, Nakajima I, Moriguchi T (2015) Histone modification and signalling cascade of the dormancy-associated MADS-box gene, PpMADS13-1, in Japanese pear (Pyrus pyrifolia) during endodormancy. Plant Cell Environ 38:1157–1166. doi: 10.1111/pce.12469 es_ES
dc.description.references Santamaría ME, Hasbún R, Valera MJ et al (2009) Acetylated H4 histone and genomic DNA methylation patterns during bud set and bud burst in Castanea sativa. J Plant Physiol 166:1360–1369. doi: 10.1016/j.jplph.2009.02.014 es_ES
dc.description.references Shen B, Hohmann S, Jensen RG, Bohnert HJ (1999) Roles of sugar alcohols in osmotic stress adaptation replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol 121:45–52. doi: 10.1104/pp.121.1.45 es_ES
dc.description.references Sheveleva EV, Marquez S, Chmara W, Zegeer A, Jensen RG, Bohnert HJ (1998) Sorbitol-6-phosphate dehydrogenase expression in transgenic tobacco high amounts of sorbitol lead to necrotic lesions. Plant Physiol 117:831–839. doi: 10.1104/pp.117.3.831 es_ES
dc.description.references Silver N, Best S, Jian J, Thein SL (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7:33. doi: 10.1186/1471-2199-7-33 es_ES
dc.description.references Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577. doi: 10.1080/10635150701472164 es_ES
dc.description.references Tao R, Uratsu SL, Dandekar AM (1995) Sorbitol synthesis in transgenic tobacco with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase. Plant Cell Physiol 36:525–532. doi: 10.1093/oxfordjournals.pcp.a078789 es_ES
dc.description.references Teo G, Suzuki Y, Uratsu SL et al (2006) Silencing leaf sorbitol synthesis alters long-distance partitioning and apple fruit quality. Proc Natl Acad Sci USA 103:18842–18847. doi: 10.1073/pnas.0605873103 es_ES
dc.description.references Trotel P, Bouchereau A, Niogret MF, Larher F (1996) The fate of osmo-accumulated proline in leaf discs of Rape (Brassica napus L) incubated in a medium of low osmolarity. Plant Sci 118:31–45. doi: 10.1016/0168-9452(96)04422-6 es_ES
dc.description.references Verde I, Abbott AG, Scalabrin S et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494. doi: 10.1038/ng.2586 es_ES
dc.description.references Webb KL, Burley JWA (1962) Sorbitol translocation in apple. Science 137:766. doi: 10.1126/science.137.3532.766 es_ES
dc.description.references Wisniewski M, Norelli J, Artlip T (2015) Overexpression of a peach CBF gene in apple: a model for understanding the integration of growth, dormancy, and cold hardiness in woody plants. Front Plant Sci 6:85. doi: 10.3389/fpls.2015.00085 es_ES
dc.description.references Yadav R, Prasad R (2014) Identification and functional characterization of sorbitol-6-phosphate dehydrogenase protein from rice and structural elucidation by in silico approach. Planta 240:223–238. doi: 10.1007/s00425-014-2076-4 es_ES


This item appears in the following Collection(s)

Show simple item record