- -

Extraction of decision rules via imprecise probabilities

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Extraction of decision rules via imprecise probabilities

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Abellán, J. es_ES
dc.contributor.author López-Maldonado, Griselda es_ES
dc.contributor.author Garach, L. es_ES
dc.contributor.author Castellano, Javier G. es_ES
dc.date.accessioned 2020-08-01T03:30:46Z
dc.date.available 2020-08-01T03:30:46Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0308-1079 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149156
dc.description "This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of General Systems on 2017, available online: https://www.tandfonline.com/doi/full/10.1080/03081079.2017.1312359" es_ES
dc.description.abstract Data analysis techniques can be applied to discover important relations among features. This is the main objective of the Information Root Node Variation (IRNV) technique, a new method to extract knowledge from data via decision trees. The decision trees used by the original method were built using classic split criteria. The performance of new split criteria based on imprecise probabilities and uncertainty measures, called credal split criteria, differs significantly from the performance obtained using the classic criteria. This paper extends the IRNV method using two credal split criteria: one based on a mathematical parametric model, and other one based on a non-parametric model. The performance of the method is analyzed using a case study of traffic accident data to identify patterns related to the severity of an accident. We found that a larger number of rules is generated, significantly supplementing the information obtained using the classic split criteria. es_ES
dc.description.sponsorship This work has been supported by the Spanish "Ministerio de Economia y Competitividad" [Project number TEC2015-69496-R] and FEDER funds. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof International Journal of General Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Imprecise probabilities es_ES
dc.subject Imprecise Dirichlet model es_ES
dc.subject Non-parametric predictive inference model es_ES
dc.subject Uncertainty measures es_ES
dc.subject Decision rules es_ES
dc.subject Traffic accident severity es_ES
dc.subject.classification INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES es_ES
dc.title Extraction of decision rules via imprecise probabilities es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/03081079.2017.1312359 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-69496-R/ES/DESARROLLO DE HERRAMIENTAS EN LA MINERIA DE DATOS UTILIZANDO MODELOS BASADOS EN PROBABILIDADES IMPRECISAS. APLICACIONES EN PROBLEMAS DE TRAFICO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports es_ES
dc.description.bibliographicCitation Abellán, J.; López-Maldonado, G.; Garach, L.; Castellano, JG. (2017). Extraction of decision rules via imprecise probabilities. International Journal of General Systems. 46(4):313-331. https://doi.org/10.1080/03081079.2017.1312359 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/03081079.2017.1312359 es_ES
dc.description.upvformatpinicio 313 es_ES
dc.description.upvformatpfin 331 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 46 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\336604 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Abellan, J., & Bosse, E. (2018). Drawbacks of Uncertainty Measures Based on the Pignistic Transformation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(3), 382-388. doi:10.1109/tsmc.2016.2597267 es_ES
dc.description.references Abellán, J., & Klir, G. J. (2005). Additivity of uncertainty measures on credal sets. International Journal of General Systems, 34(6), 691-713. doi:10.1080/03081070500396915 es_ES
dc.description.references Abellán, J., & Masegosa, A. R. (2010). An ensemble method using credal decision trees. European Journal of Operational Research, 205(1), 218-226. doi:10.1016/j.ejor.2009.12.003 es_ES
dc.description.references (2003). International Journal of Intelligent Systems, 18(12). doi:10.1002/int.v18:12 es_ES
dc.description.references Abellán, J., Klir, G. J., & Moral, S. (2006). Disaggregated total uncertainty measure for credal sets. International Journal of General Systems, 35(1), 29-44. doi:10.1080/03081070500473490 es_ES
dc.description.references Abellán, J., Baker, R. M., & Coolen, F. P. A. (2011). Maximising entropy on the nonparametric predictive inference model for multinomial data. European Journal of Operational Research, 212(1), 112-122. doi:10.1016/j.ejor.2011.01.020 es_ES
dc.description.references Abellán, J., López, G., & de Oña, J. (2013). Analysis of traffic accident severity using Decision Rules via Decision Trees. Expert Systems with Applications, 40(15), 6047-6054. doi:10.1016/j.eswa.2013.05.027 es_ES
dc.description.references Abellán, J., Baker, R. M., Coolen, F. P. A., Crossman, R. J., & Masegosa, A. R. (2014). Classification with decision trees from a nonparametric predictive inference perspective. Computational Statistics & Data Analysis, 71, 789-802. doi:10.1016/j.csda.2013.02.009 es_ES
dc.description.references Alkhalid, A., Amin, T., Chikalov, I., Hussain, S., Moshkov, M., & Zielosko, B. (2013). Optimization and analysis of decision trees and rules: dynamic programming approach. International Journal of General Systems, 42(6), 614-634. doi:10.1080/03081079.2013.798902 es_ES
dc.description.references Chang, L.-Y., & Chien, J.-T. (2013). Analysis of driver injury severity in truck-involved accidents using a non-parametric classification tree model. Safety Science, 51(1), 17-22. doi:10.1016/j.ssci.2012.06.017 es_ES
dc.description.references Chang, L.-Y., & Wang, H.-W. (2006). Analysis of traffic injury severity: An application of non-parametric classification tree techniques. Accident Analysis & Prevention, 38(5), 1019-1027. doi:10.1016/j.aap.2006.04.009 es_ES
dc.description.references DE CAMPOS, L. M., HUETE, J. F., & MORAL, S. (1994). PROBABILITY INTERVALS: A TOOL FOR UNCERTAIN REASONING. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 02(02), 167-196. doi:10.1142/s0218488594000146 es_ES
dc.description.references DGT. 2011b.Spanish Road Safety Strategy 2011–2020, 222 p. Madrid: Traffic General Directorate. es_ES
dc.description.references Dolques, X., Le Ber, F., Huchard, M., & Grac, C. (2016). Performance-friendly rule extraction in large water data-sets with AOC posets and relational concept analysis. International Journal of General Systems, 45(2), 187-210. doi:10.1080/03081079.2015.1072927 es_ES
dc.description.references Gray, R. C., Quddus, M. A., & Evans, A. (2008). Injury severity analysis of accidents involving young male drivers in Great Britain. Journal of Safety Research, 39(5), 483-495. doi:10.1016/j.jsr.2008.07.003 es_ES
dc.description.references Guo, J., & Chankong, V. (2002). Rough set-based approach to rule generation and rule induction. International Journal of General Systems, 31(6), 601-617. doi:10.1080/0308107021000034353 es_ES
dc.description.references Huang, H., Chin, H. C., & Haque, M. M. (2008). Severity of driver injury and vehicle damage in traffic crashes at intersections: A Bayesian hierarchical analysis. Accident Analysis & Prevention, 40(1), 45-54. doi:10.1016/j.aap.2007.04.002 es_ES
dc.description.references Kashani, A. T., & Mohaymany, A. S. (2011). Analysis of the traffic injury severity on two-lane, two-way rural roads based on classification tree models. Safety Science, 49(10), 1314-1320. doi:10.1016/j.ssci.2011.04.019 es_ES
dc.description.references Li, X., & Yu, L. (2016). Decision making under various types of uncertainty. International Journal of General Systems, 45(3), 251-252. doi:10.1080/03081079.2015.1086574 es_ES
dc.description.references Mantas, C. J., & Abellán, J. (2014). Analysis and extension of decision trees based on imprecise probabilities: Application on noisy data. Expert Systems with Applications, 41(5), 2514-2525. doi:10.1016/j.eswa.2013.09.050 es_ES
dc.description.references Mayhew, D. R., Simpson, H. M., & Pak, A. (2003). Changes in collision rates among novice drivers during the first months of driving. Accident Analysis & Prevention, 35(5), 683-691. doi:10.1016/s0001-4575(02)00047-7 es_ES
dc.description.references McCartt, A. T., Mayhew, D. R., Braitman, K. A., Ferguson, S. A., & Simpson, H. M. (2009). Effects of Age and Experience on Young Driver Crashes: Review of Recent Literature. Traffic Injury Prevention, 10(3), 209-219. doi:10.1080/15389580802677807 es_ES
dc.description.references Montella, A., Aria, M., D’Ambrosio, A., & Mauriello, F. (2011). Data-Mining Techniques for Exploratory Analysis of Pedestrian Crashes. Transportation Research Record: Journal of the Transportation Research Board, 2237(1), 107-116. doi:10.3141/2237-12 es_ES
dc.description.references Montella, A., Aria, M., D’Ambrosio, A., & Mauriello, F. (2012). Analysis of powered two-wheeler crashes in Italy by classification trees and rules discovery. Accident Analysis & Prevention, 49, 58-72. doi:10.1016/j.aap.2011.04.025 es_ES
dc.description.references De Oña, J., López, G., & Abellán, J. (2013). Extracting decision rules from police accident reports through decision trees. Accident Analysis & Prevention, 50, 1151-1160. doi:10.1016/j.aap.2012.09.006 es_ES
dc.description.references De Oña, J., López, G., Mujalli, R., & Calvo, F. J. (2013). Analysis of traffic accidents on rural highways using Latent Class Clustering and Bayesian Networks. Accident Analysis & Prevention, 51, 1-10. doi:10.1016/j.aap.2012.10.016 es_ES
dc.description.references Pande, A., & Abdel-Aty, M. (2009). Market basket analysis of crash data from large jurisdictions and its potential as a decision support tool. Safety Science, 47(1), 145-154. doi:10.1016/j.ssci.2007.12.001 es_ES
dc.description.references Peek-Asa, C., Britton, C., Young, T., Pawlovich, M., & Falb, S. (2010). Teenage driver crash incidence and factors influencing crash injury by rurality. Journal of Safety Research, 41(6), 487-492. doi:10.1016/j.jsr.2010.10.002 es_ES
dc.description.references Sikora, M., & Wróbel, Ł. (2013). Data-driven adaptive selection of rule quality measures for improving rule induction and filtration algorithms. International Journal of General Systems, 42(6), 594-613. doi:10.1080/03081079.2013.798901 es_ES
dc.description.references Walley, P. (1996). Inferences from Multinomial Data: Learning About a Bag of Marbles. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 3-34. doi:10.1111/j.2517-6161.1996.tb02065.x es_ES
dc.description.references Wang, Z., & Klir, G. J. (1992). Fuzzy Measure Theory. doi:10.1007/978-1-4757-5303-5 es_ES
dc.description.references Webb, G. I. (2007). Discovering Significant Patterns. Machine Learning, 68(1), 1-33. doi:10.1007/s10994-007-5006-x es_ES
dc.description.references Witten, I. H., & Frank, E. (2002). Data mining. ACM SIGMOD Record, 31(1), 76-77. doi:10.1145/507338.507355 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem