Mostrar el registro sencillo del ítem
dc.contributor.author | Galindo, José | es_ES |
dc.contributor.author | Climent, H. | es_ES |
dc.contributor.author | Pla Moreno, Benjamín | es_ES |
dc.contributor.author | Patil, Chaitanya Yashvant | es_ES |
dc.date.accessioned | 2020-08-01T03:30:49Z | |
dc.date.available | 2020-08-01T03:30:49Z | |
dc.date.issued | 2020-08 | es_ES |
dc.identifier.issn | 1229-9138 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/149157 | |
dc.description.abstract | [EN] EGR is one of the proven and well tested strategies within the specific operating range of the engine. Necessity of an implementation of this exhaust gas recirculation all over the engine operating range is emerging. Therefore, a systematic study has been carried out to identify the specific and frequent transient operations on newly developed dynamic cycles like WLTC and RDE. To perform detailed observations, these transients are imitated individually on the diesel engine test bench. High frequency gas analyzers are used to track the instantaneous CO2 and NOx concentration respectively at the intake and exhaust lines of the engine. A parametric study has been carried out using different valve movement profiles of the LPEGR and HPEGR during severe engine load change operations. An analysis is presented suggesting the best suited valve control during these harsh transients which can be helpful for transient calibration of a turbocharged diesel engine. The effect of length of Long route LPEGR line is also acknowledged. This study reveals the dynamic behavior of a diesel engine during transient operation with exhaust gas recirculation. It outlines the trade-off between performance and NOx emission and opacity for the initial phase of the transient before acquiring the steady state situation. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | International Journal of Automotive Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | EGR Transients | es_ES |
dc.subject | Hybrid EGR | es_ES |
dc.subject | Diesel Engine | es_ES |
dc.subject | NOx emissions | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | EGR transient operations in highly dynamic driving cycles | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s12239-020-0084-x | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Galindo, J.; Climent, H.; Pla Moreno, B.; Patil, CY. (2020). EGR transient operations in highly dynamic driving cycles. International Journal of Automotive Technology. 21(4):865-879. https://doi.org/10.1007/s12239-020-0084-x | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s12239-020-0084-x | es_ES |
dc.description.upvformatpinicio | 865 | es_ES |
dc.description.upvformatpfin | 879 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\401197 | es_ES |
dc.description.references | Asad, U., Tjong, J. and Zheng, M. (2014). Exhaust gas recirculation–Zero dimensional modelling and characterization for transient diesel combustion control. Energy Conversion and Management, 86, 309–324. | es_ES |
dc.description.references | Balau, A., Kooijman, D., Vazquez Rodarte, I. and Ligterink, N. (2015). Stochastic real-world drive cycle generation based on a two stage Markov chain approach. SAE Int. J. Materials and Manufacturing8, 2, 390–397. | es_ES |
dc.description.references | Benajes, J., Luján, J. M. and Serrano, J. R. (2000). Predictive modelling study of the transient load response in a heavy-duty turbocharged diesel engine. SAE Paper No. 2000-01-0583. | es_ES |
dc.description.references | Benajes, J., Lujan, J. M., Bermudez, V. and Serrano, J. R. (2002). Modelling of turbocharged diesel engines in transient operation. Part 1: Insight into the relevant physical phenomena. Proc. Institution of Mechanical Engineers, Part D: J. Automobile Engineering216, 5, 431–441. | es_ES |
dc.description.references | Black, J., Eastwood, P. G., Tufail, K., Winstanley, T., Hardalupas, Y. and Taylor, A. M. K. P. (2007). Diesel engine transient control and emissions response during a european extra-urban drive cycle (EUDC). SAE Paper No. 2007-01-1938. | es_ES |
dc.description.references | Blanco-Rodriguez, D.-I. D. (2014). Modelling and Observation of Exhaust Gas Concentrations for Diesel Engine Control. Springer. Valencia, Spain. | es_ES |
dc.description.references | Brookshire, D. and Arnold, S. D. (2007). US7165540B2. United States. | es_ES |
dc.description.references | Buchwald, R., Lautrich, G., Maiwald, O. and Sommer, A. (2006). Boost and EGR system for the highly premixed diesel combustion. SAE Paper No. 2006-01-0204. | es_ES |
dc.description.references | Chung, J., Kim, H. and Sunwoo, M. (2018). Reduction of transient NOx emissions based on set-point adaptation of real-time combustion control for light-duty diesel engines. Applied Thermal Engineering, 137, 729–738. | es_ES |
dc.description.references | Darlington, A., Glover, K. and Collings, N. (2006). A simple diesel engine air-path model to predict the cylinder charge during transients: Strategies for reducing transient emissions spikes. SAE Paper No. 2006-01-3373 | es_ES |
dc.description.references | Daya, R., Hoard, J., Chanda, S. and Singh, M. (2017). Insulated catalyst with heat storage for real-world vehicle emissions reduction. Int. J. Engine Research18, 9, 886–899. | es_ES |
dc.description.references | Donateo, T. and Giovinazzi, M. (2017). Building a cycle for real driving emissions. Energy Procedia, 126, 891–898. | es_ES |
dc.description.references | European Parliament & Council of the European Union (2016). Commission Regulation (EU) 2016/427 of 10 March 2016 Amending Regulation (EC) No 692/2008 as Regards Emissions from Light Passenger and Commercial Vehicles (Euro 6) (Text with EEA Relevance). Official J. European Union, 82(31/03/2016), 1–98. | es_ES |
dc.description.references | Giakoumis, E. G., Rakopoulos, C. D., Dimaratos, A. M. and Rakopoulos, D. C. (2012). Exhaust emissions of diesel engines operating under transient conditions with biodiesel fuel blends. Progress in Energy and Combustion Science38, 5, 691–715. | es_ES |
dc.description.references | Gong, Q., Midlam-Mohler, S., Marano, V., Rizzoni, G. and Guezennec, Y. (2010). Statistical analysis of PHEV fleet data. Proc. IEEE Vehicle Power and Propulsion Conf., Lille, France. | es_ES |
dc.description.references | Heuwetter, D., Glewen, W., Meyer, C., Foster, D. E., Andrie, M. and Krieger, R. (2011). Effects of low pressure EGR on transient air system performance and emissions for low temperature diesel combustion. SAE Paper No. 2011-24-0062. | es_ES |
dc.description.references | Khalef, M. S., Soba, A. and Korsgren, J. (2016). Study of EGR and turbocharger combinations and their influence on diesel engine’s efficiency and emissions. SAE Paper No. 2016-01-0676. | es_ES |
dc.description.references | Kooijman, D. G., Balau, A. E., Wilkins, S., Ligterink, N. and Cuelenaere, R. (2015). WLTP random cycle generator. Proc. IEEE Vehicle Power and Propulsion Conf. (VPPC), Montreal, Quebec, Canada. | es_ES |
dc.description.references | Lakshminarayanan, P. A. and Aswin, S. (2017). Estimation of particulate matter from smoke, oil consumption and fuel sulphur. SAE Paper No. 2017-01-7002. | es_ES |
dc.description.references | Lana, C. A., Kappaganthu, K., Kothandaraman, G. and PerfettoKarthik, D. J. S. C. G. H. D. K. (2016). US20160237928A1. United States. | es_ES |
dc.description.references | Leach, F. C. P., Davy, M. and Peckham, M. (2019). Cyclic NO2: NOx ratio from a diesel engine undergoing transient load steps. Int. J. Engine Research. | es_ES |
dc.description.references | Leach, F., Davy, M. and Peckham, M. (2018). Cycle-tocycle NO and NOx emissions from a HSDI diesel engine. Proc. ASME Internal Combustion Engine Division Fall Technical Conf., San Diego, California, USA. | es_ES |
dc.description.references | Liu, F. and Pfeiffer, J. (2015). Estimation algorithms for low pressure cooled EGR in spark-ignition engines. SAE Paper No. 2015-01-1620. | es_ES |
dc.description.references | Liu, F., Pfeiffer, J. M., Caudle, R., Marshall, P. and Olin, P. (2016). Low pressure cooled EGR transient estimation and measurement for an turbocharged SI engine. SAE Paper No. 2016-01-0618. | es_ES |
dc.description.references | Luján, J. M., Climent, H., Ruiz, S. and Moratal, A. (2018a). Influence of ambient temperature on diesel engine raw pollutants and fuel consumption in different driving cycles. Int. J. Engine Research20, 8–9, 877–888. | es_ES |
dc.description.references | Luján, J. M., Bermúdez, V., Dolz, V. and Monsalve-Serrano, J. (2018b). An assessment of the real-world driving gaseous emissions from a Euro 6 light-duty diesel vehicle using a portable emissions measurement system (PEMS). Atmospheric Environment, 174, 112–121. | es_ES |
dc.description.references | Luján, J. M., Climent, H., Arnau, F. J. and Miguel-García, J. (2018c). Analysis of low-pressure exhaust gases recirculation transport and control in transient operation of automotive diesel engines. Applied Thermal Engineering, 137, 184–192. | es_ES |
dc.description.references | Luján, J. M., Guardiola, C., Pla, B. and Reig, A. (2015). Switching strategy between HP (high pressure)- and LPEGR (low pressure exhaust gas recirculation) systems for reduced fuel consumption and emissions. Energy90, Part 2, 1790–1798. | es_ES |
dc.description.references | Maiboom, A., Tauzia, X. and Hétet, J. F. (2008). Experimental study of various effects of exhaust gas recirculation (EGR) on combustion and emissions of an automotive direct injection diesel engine. Energy33, 1, 22–34. | es_ES |
dc.description.references | Park, J. and Choi, J. (2016). Optimization of dual-loop exhaust gas recirculation splitting for a light-duty diesel engine with model-based control. Applied Energy, 181, 268–277. | es_ES |
dc.description.references | Park, J., Song, S. and Lee, K. S. (2015). Numerical investigation of a dual-loop EGR split strategy using a split index and multi-objective Pareto optimization. Applied Energy, 142, 21–32. | es_ES |
dc.description.references | Park, Y. and Bae, C. (2014). Experimental study on the effects of high/low pressure EGR proportion in a passenger car diesel engine. Applied Energy, 133, 308–316. | es_ES |
dc.description.references | Reifarth, S. and Angstrom, H.-E. (2009). Transient EGR in a long-route and short-route EGR system. Proc. ASME Internal Combustion Engine Division Spring Technical Conf., Milwaukee, Wisconsin, USA. | es_ES |
dc.description.references | Reifarth, S. and Angstrom, H.-E. (2010). Transient EGR in a high-speed DI diesel engine for a set of different EGRroutings. SAE Paper No. 2010-01-1271. | es_ES |
dc.description.references | Serrano, J. R., Climent, H., Guardiola, C. and Piqueras, P. (2009). Methodology for characterisation and simulation of turbocharged diesel engines combustion during transient operation. Part 2: Phenomenological combustion simulation. Applied Thermal Engineering29, 1, 150–158. | es_ES |
dc.description.references | Shutty, J. (2009). Control strategy optimization for hybrid EGR engines. SAE Paper No. 2009-01-1451. | es_ES |
dc.description.references | Soltis, R., Hilditch, J., Clark, T., House, C., Gerhart, M. and Surnilla, G. (2016). Intake oxygen sensor for EGR measurement. SAE Paper No. 2016-01-1070. | es_ES |
dc.description.references | Sutela, C., Collings, N. and Hands, T. (2000). Real time CO2 measurement to determine transient intake gas composition under EGR conditions. SAE Paper No. 2000-01-2953. | es_ES |
dc.description.references | Thunis, P., Lefebvre, W., Weiss, M., Vranckx, S., Clappier, A., Degraeuwe, B. and Janssen, S. (2017). Impact of passenger car NOX emissions on urban NO2 pollution–Scenario analysis for 8 European cities. Atmospheric Environment, 171, 330–337. | es_ES |
dc.description.references | Triantafyllopoulos, G., Katsaounis, D., Karamitros, D., Ntziachristos, L. and Samaras, Z. (2018). Experimental assessment of the potential to decrease diesel NOx emissions beyond minimum requirements for Euro 6 real drive emissions (RDE) compliance. Science of the Total Environment, 618, 1400–1407. | es_ES |
dc.description.references | Tutuianu, M., Bonnel, P., Ciuffo, B., Haniu, T., Ichikawa, N., Marotta, A., Pavlovic, J. and Steven, H. (2015). Development of the World-wide harmonized Light duty Test Cycle (WLTC) and a possible pathway for its introduction in the European legislation. Transportation Research Part D: Transport and Environment, 40, 61–75. | es_ES |
dc.description.references | Yamada, H., Misawa, K., Suzuki, D., Tanaka, K., Matsumoto, J., Fujii, M. and Tanaka, K. (2011). Detailed analysis of diesel vehicle exhaust emissions: Nitrogen oxides, hydrocarbons and particulate size distributions. Proc. Combustion Institute33, 2, 2895–2902. | es_ES |
dc.description.references | Yang, L., Franco, V., Mock, P., Kolke, R., Zhang, S., Wu, Y. and German, J. (2015). Experimental assessment of NOx emissions from 73 Euro 6 diesel passenger cars. Environmental Science and Technology49, 24, 14409–14415. | es_ES |
dc.description.references | Zamboni, G. and Capobianco, M. (2012). Experimental study on the effects of HP and LP EGR in an automotive turbocharged diesel engine. Applied Energy, 94, 117–128. | es_ES |
dc.description.references | Zamboni, G., Moggia, S. and Capobianco, M. (2017). Effects of a dual-loop exhaust gas recirculation system and variable nozzle turbine control on the operating parameters of an automotive diesel engine. Energies10, 1, 47. | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |
upv.costeAPC | 748,99 | es_ES |