- -

EGR transient operations in highly dynamic driving cycles

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

EGR transient operations in highly dynamic driving cycles

Show simple item record

Files in this item

dc.contributor.author Galindo, José es_ES
dc.contributor.author Climent, H. es_ES
dc.contributor.author Pla Moreno, Benjamín es_ES
dc.contributor.author Patil, Chaitanya Yashvant es_ES
dc.date.accessioned 2020-08-01T03:30:49Z
dc.date.available 2020-08-01T03:30:49Z
dc.date.issued 2020-08 es_ES
dc.identifier.issn 1229-9138 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149157
dc.description.abstract [EN] EGR is one of the proven and well tested strategies within the specific operating range of the engine. Necessity of an implementation of this exhaust gas recirculation all over the engine operating range is emerging. Therefore, a systematic study has been carried out to identify the specific and frequent transient operations on newly developed dynamic cycles like WLTC and RDE. To perform detailed observations, these transients are imitated individually on the diesel engine test bench. High frequency gas analyzers are used to track the instantaneous CO2 and NOx concentration respectively at the intake and exhaust lines of the engine. A parametric study has been carried out using different valve movement profiles of the LPEGR and HPEGR during severe engine load change operations. An analysis is presented suggesting the best suited valve control during these harsh transients which can be helpful for transient calibration of a turbocharged diesel engine. The effect of length of Long route LPEGR line is also acknowledged. This study reveals the dynamic behavior of a diesel engine during transient operation with exhaust gas recirculation. It outlines the trade-off between performance and NOx emission and opacity for the initial phase of the transient before acquiring the steady state situation. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof International Journal of Automotive Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject EGR Transients es_ES
dc.subject Hybrid EGR es_ES
dc.subject Diesel Engine es_ES
dc.subject NOx emissions es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title EGR transient operations in highly dynamic driving cycles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s12239-020-0084-x es_ES
dc.rights.accessRights Embargado es_ES
dc.date.embargoEndDate 2021-07-01 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Galindo, J.; Climent, H.; Pla Moreno, B.; Patil, CY. (2020). EGR transient operations in highly dynamic driving cycles. International Journal of Automotive Technology. 21(4):865-879. https://doi.org/10.1007/s12239-020-0084-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s12239-020-0084-x es_ES
dc.description.upvformatpinicio 865 es_ES
dc.description.upvformatpfin 879 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\401197 es_ES
dc.relation.references Asad, U., Tjong, J. and Zheng, M. (2014). Exhaust gas recirculation–Zero dimensional modelling and characterization for transient diesel combustion control. Energy Conversion and Management, 86, 309–324. es_ES
dc.relation.references Balau, A., Kooijman, D., Vazquez Rodarte, I. and Ligterink, N. (2015). Stochastic real-world drive cycle generation based on a two stage Markov chain approach. SAE Int. J. Materials and Manufacturing8, 2, 390–397. es_ES
dc.relation.references Benajes, J., Luján, J. M. and Serrano, J. R. (2000). Predictive modelling study of the transient load response in a heavy-duty turbocharged diesel engine. SAE Paper No. 2000-01-0583. es_ES
dc.relation.references Benajes, J., Lujan, J. M., Bermudez, V. and Serrano, J. R. (2002). Modelling of turbocharged diesel engines in transient operation. Part 1: Insight into the relevant physical phenomena. Proc. Institution of Mechanical Engineers, Part D: J. Automobile Engineering216, 5, 431–441. es_ES
dc.relation.references Black, J., Eastwood, P. G., Tufail, K., Winstanley, T., Hardalupas, Y. and Taylor, A. M. K. P. (2007). Diesel engine transient control and emissions response during a european extra-urban drive cycle (EUDC). SAE Paper No. 2007-01-1938. es_ES
dc.relation.references Blanco-Rodriguez, D.-I. D. (2014). Modelling and Observation of Exhaust Gas Concentrations for Diesel Engine Control. Springer. Valencia, Spain. es_ES
dc.relation.references Brookshire, D. and Arnold, S. D. (2007). US7165540B2. United States. es_ES
dc.relation.references Buchwald, R., Lautrich, G., Maiwald, O. and Sommer, A. (2006). Boost and EGR system for the highly premixed diesel combustion. SAE Paper No. 2006-01-0204. es_ES
dc.relation.references Chung, J., Kim, H. and Sunwoo, M. (2018). Reduction of transient NOx emissions based on set-point adaptation of real-time combustion control for light-duty diesel engines. Applied Thermal Engineering, 137, 729–738. es_ES
dc.relation.references Darlington, A., Glover, K. and Collings, N. (2006). A simple diesel engine air-path model to predict the cylinder charge during transients: Strategies for reducing transient emissions spikes. SAE Paper No. 2006-01-3373 es_ES
dc.relation.references Daya, R., Hoard, J., Chanda, S. and Singh, M. (2017). Insulated catalyst with heat storage for real-world vehicle emissions reduction. Int. J. Engine Research18, 9, 886–899. es_ES
dc.relation.references Donateo, T. and Giovinazzi, M. (2017). Building a cycle for real driving emissions. Energy Procedia, 126, 891–898. es_ES
dc.relation.references European Parliament & Council of the European Union (2016). Commission Regulation (EU) 2016/427 of 10 March 2016 Amending Regulation (EC) No 692/2008 as Regards Emissions from Light Passenger and Commercial Vehicles (Euro 6) (Text with EEA Relevance). Official J. European Union, 82(31/03/2016), 1–98. es_ES
dc.relation.references Giakoumis, E. G., Rakopoulos, C. D., Dimaratos, A. M. and Rakopoulos, D. C. (2012). Exhaust emissions of diesel engines operating under transient conditions with biodiesel fuel blends. Progress in Energy and Combustion Science38, 5, 691–715. es_ES
dc.relation.references Gong, Q., Midlam-Mohler, S., Marano, V., Rizzoni, G. and Guezennec, Y. (2010). Statistical analysis of PHEV fleet data. Proc. IEEE Vehicle Power and Propulsion Conf., Lille, France. es_ES
dc.relation.references Heuwetter, D., Glewen, W., Meyer, C., Foster, D. E., Andrie, M. and Krieger, R. (2011). Effects of low pressure EGR on transient air system performance and emissions for low temperature diesel combustion. SAE Paper No. 2011-24-0062. es_ES
dc.relation.references Khalef, M. S., Soba, A. and Korsgren, J. (2016). Study of EGR and turbocharger combinations and their influence on diesel engine’s efficiency and emissions. SAE Paper No. 2016-01-0676. es_ES
dc.relation.references Kooijman, D. G., Balau, A. E., Wilkins, S., Ligterink, N. and Cuelenaere, R. (2015). WLTP random cycle generator. Proc. IEEE Vehicle Power and Propulsion Conf. (VPPC), Montreal, Quebec, Canada. es_ES
dc.relation.references Lakshminarayanan, P. A. and Aswin, S. (2017). Estimation of particulate matter from smoke, oil consumption and fuel sulphur. SAE Paper No. 2017-01-7002. es_ES
dc.relation.references Lana, C. A., Kappaganthu, K., Kothandaraman, G. and PerfettoKarthik, D. J. S. C. G. H. D. K. (2016). US20160237928A1. United States. es_ES
dc.relation.references Leach, F. C. P., Davy, M. and Peckham, M. (2019). Cyclic NO2: NOx ratio from a diesel engine undergoing transient load steps. Int. J. Engine Research. es_ES
dc.relation.references Leach, F., Davy, M. and Peckham, M. (2018). Cycle-tocycle NO and NOx emissions from a HSDI diesel engine. Proc. ASME Internal Combustion Engine Division Fall Technical Conf., San Diego, California, USA. es_ES
dc.relation.references Liu, F. and Pfeiffer, J. (2015). Estimation algorithms for low pressure cooled EGR in spark-ignition engines. SAE Paper No. 2015-01-1620. es_ES
dc.relation.references Liu, F., Pfeiffer, J. M., Caudle, R., Marshall, P. and Olin, P. (2016). Low pressure cooled EGR transient estimation and measurement for an turbocharged SI engine. SAE Paper No. 2016-01-0618. es_ES
dc.relation.references Luján, J. M., Climent, H., Ruiz, S. and Moratal, A. (2018a). Influence of ambient temperature on diesel engine raw pollutants and fuel consumption in different driving cycles. Int. J. Engine Research20, 8–9, 877–888. es_ES
dc.relation.references Luján, J. M., Bermúdez, V., Dolz, V. and Monsalve-Serrano, J. (2018b). An assessment of the real-world driving gaseous emissions from a Euro 6 light-duty diesel vehicle using a portable emissions measurement system (PEMS). Atmospheric Environment, 174, 112–121. es_ES
dc.relation.references Luján, J. M., Climent, H., Arnau, F. J. and Miguel-García, J. (2018c). Analysis of low-pressure exhaust gases recirculation transport and control in transient operation of automotive diesel engines. Applied Thermal Engineering, 137, 184–192. es_ES
dc.relation.references Luján, J. M., Guardiola, C., Pla, B. and Reig, A. (2015). Switching strategy between HP (high pressure)- and LPEGR (low pressure exhaust gas recirculation) systems for reduced fuel consumption and emissions. Energy90, Part 2, 1790–1798. es_ES
dc.relation.references Maiboom, A., Tauzia, X. and Hétet, J. F. (2008). Experimental study of various effects of exhaust gas recirculation (EGR) on combustion and emissions of an automotive direct injection diesel engine. Energy33, 1, 22–34. es_ES
dc.relation.references Park, J. and Choi, J. (2016). Optimization of dual-loop exhaust gas recirculation splitting for a light-duty diesel engine with model-based control. Applied Energy, 181, 268–277. es_ES
dc.relation.references Park, J., Song, S. and Lee, K. S. (2015). Numerical investigation of a dual-loop EGR split strategy using a split index and multi-objective Pareto optimization. Applied Energy, 142, 21–32. es_ES
dc.relation.references Park, Y. and Bae, C. (2014). Experimental study on the effects of high/low pressure EGR proportion in a passenger car diesel engine. Applied Energy, 133, 308–316. es_ES
dc.relation.references Reifarth, S. and Angstrom, H.-E. (2009). Transient EGR in a long-route and short-route EGR system. Proc. ASME Internal Combustion Engine Division Spring Technical Conf., Milwaukee, Wisconsin, USA. es_ES
dc.relation.references Reifarth, S. and Angstrom, H.-E. (2010). Transient EGR in a high-speed DI diesel engine for a set of different EGRroutings. SAE Paper No. 2010-01-1271. es_ES
dc.relation.references Serrano, J. R., Climent, H., Guardiola, C. and Piqueras, P. (2009). Methodology for characterisation and simulation of turbocharged diesel engines combustion during transient operation. Part 2: Phenomenological combustion simulation. Applied Thermal Engineering29, 1, 150–158. es_ES
dc.relation.references Shutty, J. (2009). Control strategy optimization for hybrid EGR engines. SAE Paper No. 2009-01-1451. es_ES
dc.relation.references Soltis, R., Hilditch, J., Clark, T., House, C., Gerhart, M. and Surnilla, G. (2016). Intake oxygen sensor for EGR measurement. SAE Paper No. 2016-01-1070. es_ES
dc.relation.references Sutela, C., Collings, N. and Hands, T. (2000). Real time CO2 measurement to determine transient intake gas composition under EGR conditions. SAE Paper No. 2000-01-2953. es_ES
dc.relation.references Thunis, P., Lefebvre, W., Weiss, M., Vranckx, S., Clappier, A., Degraeuwe, B. and Janssen, S. (2017). Impact of passenger car NOX emissions on urban NO2 pollution–Scenario analysis for 8 European cities. Atmospheric Environment, 171, 330–337. es_ES
dc.relation.references Triantafyllopoulos, G., Katsaounis, D., Karamitros, D., Ntziachristos, L. and Samaras, Z. (2018). Experimental assessment of the potential to decrease diesel NOx emissions beyond minimum requirements for Euro 6 real drive emissions (RDE) compliance. Science of the Total Environment, 618, 1400–1407. es_ES
dc.relation.references Tutuianu, M., Bonnel, P., Ciuffo, B., Haniu, T., Ichikawa, N., Marotta, A., Pavlovic, J. and Steven, H. (2015). Development of the World-wide harmonized Light duty Test Cycle (WLTC) and a possible pathway for its introduction in the European legislation. Transportation Research Part D: Transport and Environment, 40, 61–75. es_ES
dc.relation.references Yamada, H., Misawa, K., Suzuki, D., Tanaka, K., Matsumoto, J., Fujii, M. and Tanaka, K. (2011). Detailed analysis of diesel vehicle exhaust emissions: Nitrogen oxides, hydrocarbons and particulate size distributions. Proc. Combustion Institute33, 2, 2895–2902. es_ES
dc.relation.references Yang, L., Franco, V., Mock, P., Kolke, R., Zhang, S., Wu, Y. and German, J. (2015). Experimental assessment of NOx emissions from 73 Euro 6 diesel passenger cars. Environmental Science and Technology49, 24, 14409–14415. es_ES
dc.relation.references Zamboni, G. and Capobianco, M. (2012). Experimental study on the effects of HP and LP EGR in an automotive turbocharged diesel engine. Applied Energy, 94, 117–128. es_ES
dc.relation.references Zamboni, G., Moggia, S. and Capobianco, M. (2017). Effects of a dual-loop exhaust gas recirculation system and variable nozzle turbine control on the operating parameters of an automotive diesel engine. Energies10, 1, 47. es_ES


This item appears in the following Collection(s)

Show simple item record