- -

Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene

Show simple item record

Files in this item

dc.contributor.author Bereciartua-Pérez, Pablo Javier es_ES
dc.contributor.author Cantin Sanz, Angel es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author Jorda Moret, Jose Luis es_ES
dc.contributor.author Palomino Roca, Miguel es_ES
dc.contributor.author Rey Garcia, Fernando es_ES
dc.contributor.author Valencia Valencia, Susana es_ES
dc.contributor.author Corcoran Jr., Edward W. es_ES
dc.contributor.author Kortunov, Pavel es_ES
dc.contributor.author Ravikovitch, Peter I. es_ES
dc.contributor.author Burton, Allen es_ES
dc.contributor.author Yoon, Chris es_ES
dc.contributor.author Wang, Yu es_ES
dc.contributor.author Paur, Charanjit es_ES
dc.contributor.author Guzman, Javier es_ES
dc.contributor.author Bishop, Adeana R. es_ES
dc.contributor.author Casty, Gary L. es_ES
dc.date.accessioned 2020-09-08T03:32:03Z
dc.date.available 2020-09-08T03:32:03Z
dc.date.issued 2017-11-24 es_ES
dc.identifier.issn 0036-8075 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149541
dc.description.abstract [EN] The discovery of new materials for separating ethylene from ethane by adsorption, instead of using cryogenic distillation, is a key milestone for molecular separations because of the multiple and widely extended uses of these molecules in industry. This technique has the potential to provide tremendous energy savings when compared with the currently used cryogenic distillation process for ethylene produced through steam cracking. Here we describe the synthesis and structural determination of a flexible pure silica zeolite (ITQ-55). This material can kinetically separate ethylene from ethane with an unprecedented selectivity of ~100, owing to its distinctive pore topology with large heart-shaped cages and framework flexibility. Control of such properties extends the boundaries for applicability of zeolites to challenging separations. es_ES
dc.description.sponsorship We gratefully acknowledge financial support from ExxonMobil Research and Engineering Company, Instituto de Tecnologia Quimica researchers also thank the European Research Council (grant ERC-2014-AdG-671093 "MATching zeolite SYNthiesis with CATalytic activity") and the Spanish government (grants MAT2015-71842-P MINECO/FEDER and Severe Ochea SEV-2012-0267 and SEV-2016-0683) for economic support es_ES
dc.language Inglés es_ES
dc.publisher American Association for the Advancement of Science (AAAS) es_ES
dc.relation.ispartof Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Adsorption es_ES
dc.subject Ethylene es_ES
dc.subject Ethane es_ES
dc.subject Zeolite es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1126/science.aao0092 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-71842-P/ES/SINTESIS Y CARACTERIZACION AVANZADA DE NUEVOS MATERIALES ZEOLITICOS Y APLICACIONES EN ADSORCION, MEDIOAMBIENTE Y EN LA CONSERVACION DE ALIMENTOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Bereciartua-Pérez, PJ.; Cantin Sanz, A.; Corma Canós, A.; Jorda Moret, JL.; Palomino Roca, M.; Rey Garcia, F.; Valencia Valencia, S.... (2017). Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science. 358(6366):1068-1071. https://doi.org/10.1126/science.aao0092 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1126/science.aao0092 es_ES
dc.description.upvformatpinicio 1068 es_ES
dc.description.upvformatpfin 1071 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 358 es_ES
dc.description.issue 6366 es_ES
dc.identifier.pmid 29170235 es_ES
dc.relation.pasarela S\348494 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder ExxonMobil Research and Engineering Company es_ES
dc.description.references L. Kniel, O. Winter, K. Stork, in Ethylene, Keystone to the Petrochemical Industry (Chemical Industries) (Taylor & Francis, 1980), pp. 14–35. es_ES
dc.description.references H. A. Wittcoff, B. G. Reuben, J. S. Plotkin, “Chemicals and polymers from ethylene” in Industrial Organic Chemicals (Wiley, ed. 2, 2005), pp. 100–166. es_ES
dc.description.references Corma, A., Corresa, E., Mathieu, Y., Sauvanaud, L., Al-Bogami, S., Al-Ghrami, M. S., & Bourane, A. (2017). Crude oil to chemicals: light olefins from crude oil. Catalysis Science & Technology, 7(1), 12-46. doi:10.1039/c6cy01886f es_ES
dc.description.references Sadrameli, S. M. (2015). Thermal/catalytic cracking of hydrocarbons for the production of olefins: A state-of-the-art review I: Thermal cracking review. Fuel, 140, 102-115. doi:10.1016/j.fuel.2014.09.034 es_ES
dc.description.references Anson, A., Wang, Y., Lin, C. C. H., Kuznicki, T. M., & Kuznicki, S. M. (2008). Adsorption of ethane and ethylene on modified ETS-10. Chemical Engineering Science, 63(16), 4171-4175. doi:10.1016/j.ces.2008.05.038 es_ES
dc.description.references Sholl, D. S., & Lively, R. P. (2016). Seven chemical separations to change the world. Nature, 532(7600), 435-437. doi:10.1038/532435a es_ES
dc.description.references Martins, V. F. D., Ribeiro, A. M., Santos, J. C., Loureiro, J. M., Gleichmann, K., Ferreira, A., & Rodrigues, A. E. (2016). Development of gas-phase SMB technology for light olefin/paraffin separations. AIChE Journal, 62(7), 2490-2500. doi:10.1002/aic.15238 es_ES
dc.description.references Narin, G., Martins, V. F. D., Campo, M., Ribeiro, A. M., Ferreira, A., Santos, J. C., … Rodrigues, A. E. (2014). Light olefins/paraffins separation with 13X zeolite binderless beads. Separation and Purification Technology, 133, 452-475. doi:10.1016/j.seppur.2014.06.060 es_ES
dc.description.references National Research Council, Separation Technologies for the Industries of the Future (National Materials Advisory Board, Commission on Engineering and Technical Systems, National Research Council, Publication NMAB-487-3, National Academy Press, 1998). es_ES
dc.description.references G. E. Keller, “High-priority separation materials R&D needs in the chemicals and petrochemicals industries” in Materials for Separation Technologies: Energy and Emission Reduction Opportunities (Oak Ridge National Laboratory and BCS, 2005), appendix D, pp. 87–97. es_ES
dc.description.references Safarik, D. J., & Eldridge, R. B. (1998). Olefin/Paraffin Separations by Reactive Absorption:  A Review. Industrial & Engineering Chemistry Research, 37(7), 2571-2581. doi:10.1021/ie970897h es_ES
dc.description.references Rege, S. U., Padin, J., & Yang, R. T. (1998). Olefin/paraffin separations by adsorption: π-Complexation vs. kinetic separation. AIChE Journal, 44(4), 799-809. doi:10.1002/aic.690440405 es_ES
dc.description.references G. E. Keller, A. E. Marcinkowsky, S. K. Verma, K. D. Williamson, “Olefin recovery and purification via silver complexing” in Separation and Purification Technology, N. N. Li, J. M. Calo, Eds. (Marcel Dekker, 1992), pp. 59–83. es_ES
dc.description.references Yang, R. T., & Kikkinides, E. S. (1995). New sorbents for olefin/paraffin separations by adsorption viaπ -complexation. AIChE Journal, 41(3), 509-517. doi:10.1002/aic.690410309 es_ES
dc.description.references Aguado, S., Bergeret, G., Daniel, C., & Farrusseng, D. (2012). Absolute Molecular Sieve Separation of Ethylene/Ethane Mixtures with Silver Zeolite A. Journal of the American Chemical Society, 134(36), 14635-14637. doi:10.1021/ja305663k es_ES
dc.description.references Van Miltenburg, A., Zhu, W., Kapteijn, F., & Moulijn, J. A. (2006). Adsorptive Separation of Light Olefin/Paraffin Mixtures. Chemical Engineering Research and Design, 84(5), 350-354. doi:10.1205/cherd05021 es_ES
dc.description.references Min Wang, Q., Shen, D., Bülow, M., Ling Lau, M., Deng, S., Fitch, F. R., … Semanscin, J. (2002). Metallo-organic molecular sieve for gas separation and purification. Microporous and Mesoporous Materials, 55(2), 217-230. doi:10.1016/s1387-1811(02)00405-5 es_ES
dc.description.references Martins, V. F. D., Ribeiro, A. M., Ferreira, A., Lee, U.-H., Hwang, Y. K., Chang, J.-S., … Rodrigues, A. E. (2015). Ethane/ethylene separation on a copper benzene-1,3,5-tricarboxylate MOF. Separation and Purification Technology, 149, 445-456. doi:10.1016/j.seppur.2015.06.012 es_ES
dc.description.references Bloch, E. D., Queen, W. L., Krishna, R., Zadrozny, J. M., Brown, C. M., & Long, J. R. (2012). Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites. Science, 335(6076), 1606-1610. doi:10.1126/science.1217544 es_ES
dc.description.references Böhme, U., Barth, B., Paula, C., Kuhnt, A., Schwieger, W., Mundstock, A., … Hartmann, M. (2013). Ethene/Ethane and Propene/Propane Separation via the Olefin and Paraffin Selective Metal–Organic Framework Adsorbents CPO-27 and ZIF-8. Langmuir, 29(27), 8592-8600. doi:10.1021/la401471g es_ES
dc.description.references Maghsoudi, H. (2016). Comparative study of adsorbents performance in ethylene/ethane separation. Adsorption, 22(7), 985-992. doi:10.1007/s10450-016-9805-x es_ES
dc.description.references Mofarahi, M., & Salehi, S. M. (2012). Pure and binary adsorption isotherms of ethylene and ethane on zeolite 5A. Adsorption, 19(1), 101-110. doi:10.1007/s10450-012-9423-1 es_ES
dc.description.references Shi, M., Avila, A. M., Yang, F., Kuznicki, T. M., & Kuznicki, S. M. (2011). High pressure adsorptive separation of ethylene and ethane on Na-ETS-10. Chemical Engineering Science, 66(12), 2817-2822. doi:10.1016/j.ces.2011.03.046 es_ES
dc.description.references Gücüyener, C., van den Bergh, J., Gascon, J., & Kapteijn, F. (2010). Ethane/Ethene Separation Turned on Its Head: Selective Ethane Adsorption on the Metal−Organic Framework ZIF-7 through a Gate-Opening Mechanism. Journal of the American Chemical Society, 132(50), 17704-17706. doi:10.1021/ja1089765 es_ES
dc.description.references Hartmann, M., Böhme, U., Hovestadt, M., & Paula, C. (2015). Adsorptive Separation of Olefin/Paraffin Mixtures with ZIF-4. Langmuir, 31(45), 12382-12389. doi:10.1021/acs.langmuir.5b02907 es_ES
dc.description.references Olson, D. H., Yang, X., & Camblor, M. A. (2004). ITQ-12:  A Zeolite Having Temperature Dependent Adsorption Selectivity and Potential for Propene Separation. The Journal of Physical Chemistry B, 108(30), 11044-11048. doi:10.1021/jp040216d es_ES
dc.description.references Palomino, M., Cantín, A., Corma, A., Leiva, S., Rey, F., & Valencia, S. (2007). Pure silica ITQ-32 zeolite allows separation of linear olefins from paraffins. Chem. Commun., (12), 1233-1235. doi:10.1039/b700358g es_ES
dc.description.references Zhu, W., Kapteijn, F., Moulijn, J. A., den Exter, M. C., & Jansen, J. C. (2000). Shape Selectivity in Adsorption on the All-Silica DD3R. Langmuir, 16(7), 3322-3329. doi:10.1021/la9914007 es_ES
dc.description.references Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909 es_ES
dc.description.references Barrett, P. A., Boix, T., Puche, M., Olson, D. H., Jordan, E., Koller, H., & Camblor, M. A. (2003). ITQ-12: a new microporous silica polymorph potentially useful for light hydrocarbon separationsElectronic supplementary information (ESI) available: details of the structure solution, Rietveld refinements in space groups C2/m and Cm and energy minimisation calculations in C2/m, Cm and C2. See http://www.rsc.org/suppdata/cc/b3/b306440a/. Chemical Communications, (17), 2114. doi:10.1039/b306440a es_ES
dc.description.references Ruthven, D. M., & Reyes, S. C. (2007). Adsorptive separation of light olefins from paraffins. Microporous and Mesoporous Materials, 104(1-3), 59-66. doi:10.1016/j.micromeso.2007.01.005 es_ES
dc.description.references A. Corma Canos, F. Rey Garcia, S. Valencia Valencia, A. Cantin Sanz, M. Palomino Roca, Patent ES2554648 (B1) (2015). es_ES
dc.description.references Vidal-Moya, J. A., Blasco, T., Rey, F., Corma, A., & Puche, M. (2003). Distribution of Fluorine and Germanium in a New Zeolite Structure ITQ-13 Studied by19F Nuclear Magnetic Resonance. Chemistry of Materials, 15(21), 3961-3963. doi:10.1021/cm034515b es_ES
dc.description.references Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. doi:10.1515/pac-2014-1117 es_ES
dc.description.references Jiang, J., Jorda, J. L., Yu, J., Baumes, L. A., Mugnaioli, E., Diaz-Cabanas, M. J., … Corma, A. (2011). Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43. Science, 333(6046), 1131-1134. doi:10.1126/science.1208652 es_ES
dc.description.references Yun, Y., Zou, X., Hovmöller, S., & Wan, W. (2015). Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders. IUCrJ, 2(2), 267-282. doi:10.1107/s2052252514028188 es_ES
dc.description.references Gemmi, M., La Placa, M. G. I., Galanis, A. S., Rauch, E. F., & Nicolopoulos, S. (2015). Fast electron diffraction tomography. Journal of Applied Crystallography, 48(3), 718-727. doi:10.1107/s1600576715004604 es_ES
dc.description.references Simancas, J., Simancas, R., Bereciartua, P. J., Jorda, J. L., Rey, F., Corma, A., … Mugnaioli, E. (2016). Ultrafast Electron Diffraction Tomography for Structure Determination of the New Zeolite ITQ-58. Journal of the American Chemical Society, 138(32), 10116-10119. doi:10.1021/jacs.6b06394 es_ES
dc.description.references Awati, R. V., Ravikovitch, P. I., & Sholl, D. S. (2013). Efficient and Accurate Methods for Characterizing Effects of Framework Flexibility on Molecular Diffusion in Zeolites: CH4 Diffusion in Eight Member Ring Zeolites. The Journal of Physical Chemistry C, 117(26), 13462-13473. doi:10.1021/jp402959t es_ES
dc.description.references Boulfelfel, S. E., Ravikovitch, P. I., & Sholl, D. S. (2015). Modeling Diffusion of Linear Hydrocarbons in Silica Zeolite LTA Using Transition Path Sampling. The Journal of Physical Chemistry C, 119(27), 15643-15653. doi:10.1021/acs.jpcc.5b01633 es_ES
dc.description.references Gutiérrez-Sevillano, J. J., Calero, S., Hamad, S., Grau-Crespo, R., Rey, F., Valencia, S., … Ruiz-Salvador, A. R. (2016). Critical Role of Dynamic Flexibility in Ge-Containing Zeolites: Impact on Diffusion. Chemistry - A European Journal, 22(29), 10036-10043. doi:10.1002/chem.201600983 es_ES
dc.description.references J. Karger, D. M. Ruthven, D. N. Theodorou, Diffusion in Nanoporous Materials (Wiley, 2012). es_ES
dc.description.references Zhang, C., Lively, R. P., Zhang, K., Johnson, J. R., Karvan, O., & Koros, W. J. (2012). Unexpected Molecular Sieving Properties of Zeolitic Imidazolate Framework-8. The Journal of Physical Chemistry Letters, 3(16), 2130-2134. doi:10.1021/jz300855a es_ES
dc.description.references Haldoupis, E., Watanabe, T., Nair, S., & Sholl, D. S. (2012). Quantifying Large Effects of Framework Flexibility on Diffusion in MOFs: CH4and CO2in ZIF-8. ChemPhysChem, 13(15), 3449-3452. doi:10.1002/cphc.201200529 es_ES
dc.description.references Verploegh, R. J., Nair, S., & Sholl, D. S. (2015). Temperature and Loading-Dependent Diffusion of Light Hydrocarbons in ZIF-8 as Predicted Through Fully Flexible Molecular Simulations. Journal of the American Chemical Society, 137(50), 15760-15771. doi:10.1021/jacs.5b08746 es_ES
dc.description.references Vidoni, A., & Ruthven, D. M. (2012). Diffusion of C2H6 and C2H4 in DDR Zeolite. Industrial & Engineering Chemistry Research, 51(3), 1383-1390. doi:10.1021/ie202449q es_ES
dc.description.references Rungta, M., Xu, L., & Koros, W. J. (2012). Carbon molecular sieve dense film membranes derived from Matrimid® for ethylene/ethane separation. Carbon, 50(4), 1488-1502. doi:10.1016/j.carbon.2011.11.019 es_ES
dc.description.references Zheng, Y., Hu, N., Wang, H., Bu, N., Zhang, F., & Zhou, R. (2015). Preparation of steam-stable high-silica CHA (SSZ-13) membranes for CO2/CH4 and C2H4/C2H6 separation. Journal of Membrane Science, 475, 303-310. doi:10.1016/j.memsci.2014.10.048 es_ES
dc.description.references Bachman, J. E., Smith, Z. P., Li, T., Xu, T., & Long, J. R. (2016). Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals. Nature Materials, 15(8), 845-849. doi:10.1038/nmat4621 es_ES
dc.description.references Hedlund, J., Sterte, J., Anthonis, M., Bons, A.-J., Carstensen, B., Corcoran, N., … Peters, J. (2002). High-flux MFI membranes. Microporous and Mesoporous Materials, 52(3), 179-189. doi:10.1016/s1387-1811(02)00316-5 es_ES
dc.description.references Kolb, U., Mugnaioli, E., & Gorelik, T. E. (2011). Automated electron diffraction tomography - a new tool for nano crystal structure analysis. Crystal Research and Technology, 46(6), 542-554. doi:10.1002/crat.201100036 es_ES
dc.description.references Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., … Polidori, G. (2015). Crystal structure determination and refinementviaSIR2014. Journal of Applied Crystallography, 48(1), 306-309. doi:10.1107/s1600576715001132 es_ES
dc.description.references Petříček, V., Dušek, M., & Palatinus, L. (2014). Crystallographic Computing System JANA2006: General features. Zeitschrift für Kristallographie - Crystalline Materials, 229(5). doi:10.1515/zkri-2014-1737 es_ES
dc.description.references Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K., & Payne, M. C. (2005). First principles methods using CASTEP. Zeitschrift für Kristallographie - Crystalline Materials, 220(5/6). doi:10.1524/zkri.220.5.567.65075 es_ES
dc.description.references Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865 es_ES
dc.description.references Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787-1799. doi:10.1002/jcc.20495 es_ES
dc.description.references McNellis, E. R., Meyer, J., & Reuter, K. (2009). Azobenzene at coinage metal surfaces: Role of dispersive van der Waals interactions. Physical Review B, 80(20). doi:10.1103/physrevb.80.205414 es_ES
dc.description.references Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406 es_ES
dc.description.references Tuckerman, M. E., Liu, Y., Ciccotti, G., & Martyna, G. J. (2001). Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems. The Journal of Chemical Physics, 115(4), 1678-1702. doi:10.1063/1.1378321 es_ES
dc.description.references Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182-7190. doi:10.1063/1.328693 es_ES
dc.description.references Niklasson, A. M. N., Steneteg, P., & Bock, N. (2011). Extended Lagrangian free energy molecular dynamics. The Journal of Chemical Physics, 135(16), 164111. doi:10.1063/1.3656977 es_ES
dc.description.references Boulfelfel, S. E., Ravikovitch, P. I., Koziol, L., & Sholl, D. S. (2016). Improved Hill–Sauer Force Field for Accurate Description of Pores in 8-Ring Zeolites. The Journal of Physical Chemistry C, 120(26), 14140-14148. doi:10.1021/acs.jpcc.6b03674 es_ES
dc.description.references Talu, O., & Myers, A. L. (2001). Reference potentials for adsorption of helium, argon, methane, and krypton in high-silica zeolites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187-188, 83-93. doi:10.1016/s0927-7757(01)00628-8 es_ES
dc.description.references Wick, C. D., Martin, M. G., & Siepmann, J. I. (2000). Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes. The Journal of Physical Chemistry B, 104(33), 8008-8016. doi:10.1021/jp001044x es_ES
dc.description.references Binder, T., Chmelik, C., Kärger, J., Martinez-Joaristi, A., Gascon, J., Kapteijn, F., & Ruthven, D. (2013). A diffusion study of small hydrocarbons in DDR zeolites by micro-imaging. Microporous and Mesoporous Materials, 180, 219-228. doi:10.1016/j.micromeso.2013.06.038 es_ES
dc.description.references A. van Miltenburg, “Adsorptive separation of light olefin/paraffin mixtures: Dispersion of CuCl in faujasite zeolites,” thesis, Technische Universiteit Delft (2007). es_ES
dc.description.references Olson, D. H., Camblor, M. A., Villaescusa, L. A., & Kuehl, G. H. (2004). Light hydrocarbon sorption properties of pure silica Si-CHA and ITQ-3 and high silica ZSM-58. Microporous and Mesoporous Materials, 67(1), 27-33. doi:10.1016/j.micromeso.2003.09.025 es_ES


This item appears in the following Collection(s)

Show simple item record