Mostrar el registro sencillo del ítem
dc.contributor.author | López Ortí, J.A. | es_ES |
dc.contributor.author | Marco Castillo, Francisco J. | es_ES |
dc.contributor.author | Martínez Uso, María José | es_ES |
dc.date.accessioned | 2020-09-08T03:32:16Z | |
dc.date.available | 2020-09-08T03:32:16Z | |
dc.date.issued | 2017-01-01 | es_ES |
dc.identifier.issn | 0377-0427 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/149548 | |
dc.description.abstract | [EN] This paper is aimed to address the study of techniques focused on the use of a family of anomalies based on a family of geometric transformations that includes the true anomaly f, the eccentric anomaly g and the secondary anomaly f' defined as the polar angle with respect to the secondary focus of the ellipse. This family is constructed using a natural generalization of the eccentric anomaly. The use of this family allows closed equations for the classical quantities of the two body problem that extends the classic, which are referred to eccentric, true and secondary anomalies. In this paper we obtain the exact analytical development of the basic quantities of the two body problem in order to be used in the analytical theories of the planetary motion. In addition, this paper includes the study of the minimization of the errors in the numerical integration by an appropriate choice of parameters in our selected family of anomalies for each value of the eccentricity. (C) 2016 Elsevier B.V. All rights reserved. | es_ES |
dc.description.sponsorship | This research has been partially supported by Grant P1.1B2012-47 from University Jaume I of Castellón and Grant AICO/2015/037 from Generalitat Valenciana. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Computational and Applied Mathematics | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Celestial mechanics | es_ES |
dc.subject | Orbital motion | es_ES |
dc.subject | Ordinary differential equations | es_ES |
dc.subject | Computational algebra | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Geometrical definition of a continuous family of time transformations generalizing and including the classic anomalies of the elliptic two-body problem | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1016/j.cam.2016.02.041 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UJI//P1.1B2012-47/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2015%2F037/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | López Ortí, J.; Marco Castillo, FJ.; Martínez Uso, MJ. (2017). Geometrical definition of a continuous family of time transformations generalizing and including the classic anomalies of the elliptic two-body problem. Journal of Computational and Applied Mathematics. 309:482-492. https://doi.org/10.1016/j.cam.2016.02.041 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | Mathematical Modelling in Engineering & Human Behaviour 2015. 17th Edition of the Mathematical Modelling Conference Series at the Institute for Multidisciplinary Mathematics | es_ES |
dc.relation.conferencedate | Septiembre 09-11,2015 | es_ES |
dc.relation.conferenceplace | Valencia, Spain | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.cam.2016.02.041 | es_ES |
dc.description.upvformatpinicio | 482 | es_ES |
dc.description.upvformatpfin | 492 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 309 | es_ES |
dc.relation.pasarela | S\323192 | es_ES |
dc.contributor.funder | Universitat Jaume I | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |