- -

Geometrical definition of a continuous family of time transformations generalizing and including the classic anomalies of the elliptic two-body problem

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Geometrical definition of a continuous family of time transformations generalizing and including the classic anomalies of the elliptic two-body problem

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author López Ortí, J.A. es_ES
dc.contributor.author Marco Castillo, Francisco J. es_ES
dc.contributor.author Martínez Uso, María José es_ES
dc.date.accessioned 2020-09-08T03:32:16Z
dc.date.available 2020-09-08T03:32:16Z
dc.date.issued 2017-01-01 es_ES
dc.identifier.issn 0377-0427 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149548
dc.description.abstract [EN] This paper is aimed to address the study of techniques focused on the use of a family of anomalies based on a family of geometric transformations that includes the true anomaly f, the eccentric anomaly g and the secondary anomaly f' defined as the polar angle with respect to the secondary focus of the ellipse. This family is constructed using a natural generalization of the eccentric anomaly. The use of this family allows closed equations for the classical quantities of the two body problem that extends the classic, which are referred to eccentric, true and secondary anomalies. In this paper we obtain the exact analytical development of the basic quantities of the two body problem in order to be used in the analytical theories of the planetary motion. In addition, this paper includes the study of the minimization of the errors in the numerical integration by an appropriate choice of parameters in our selected family of anomalies for each value of the eccentricity. (C) 2016 Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship This research has been partially supported by Grant P1.1B2012-47 from University Jaume I of Castellón and Grant AICO/2015/037 from Generalitat Valenciana. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Computational and Applied Mathematics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Celestial mechanics es_ES
dc.subject Orbital motion es_ES
dc.subject Ordinary differential equations es_ES
dc.subject Computational algebra es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Geometrical definition of a continuous family of time transformations generalizing and including the classic anomalies of the elliptic two-body problem es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1016/j.cam.2016.02.041 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UJI//P1.1B2012-47/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2015%2F037/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation López Ortí, J.; Marco Castillo, FJ.; Martínez Uso, MJ. (2017). Geometrical definition of a continuous family of time transformations generalizing and including the classic anomalies of the elliptic two-body problem. Journal of Computational and Applied Mathematics. 309:482-492. https://doi.org/10.1016/j.cam.2016.02.041 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename Mathematical Modelling in Engineering & Human Behaviour 2015. 17th Edition of the Mathematical Modelling Conference Series at the Institute for Multidisciplinary Mathematics es_ES
dc.relation.conferencedate Septiembre 09-11,2015 es_ES
dc.relation.conferenceplace Valencia, Spain es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cam.2016.02.041 es_ES
dc.description.upvformatpinicio 482 es_ES
dc.description.upvformatpfin 492 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 309 es_ES
dc.relation.pasarela S\323192 es_ES
dc.contributor.funder Universitat Jaume I es_ES
dc.contributor.funder Generalitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem