- -

Biochemical responses to drought, at the seedling stage, of several Romanian Carpathian populations of Norway spruce (Picea abies L. Karst)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Biochemical responses to drought, at the seedling stage, of several Romanian Carpathian populations of Norway spruce (Picea abies L. Karst)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Schiop, Sorin T. es_ES
dc.contributor.author Al Hassan, Mohamad es_ES
dc.contributor.author Sestras, Adriana F. es_ES
dc.contributor.author Boscaiu, Monica es_ES
dc.contributor.author Sestras, Radu E. es_ES
dc.contributor.author Vicente, Oscar es_ES
dc.date.accessioned 2020-09-09T03:31:35Z
dc.date.available 2020-09-09T03:31:35Z
dc.date.issued 2017-10 es_ES
dc.identifier.issn 0931-1890 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149641
dc.description.abstract [EN] Norway spruce is a native European coniferous species distributed from the Carpathian Mountains and the Alps to northern Scandinavia. In the coming decades, spruce forests will need to cope with increasing climate changes which are already threatening their natural habitats. To identify reliable water stress biomarkers in this species, which may be eventually used to select populations responding better to forecasted drought events, we studied the physiological responses to severe water stress treatments (6-week withholding irrigation in the greenhouse) of 1-year-old spruce seedlings originating from several locations in the Romanian Carpathian Mountains. Variations in the levels of the studied photosynthetic pigments, osmolytes, and non-enzymatic antioxidants were detected across the spruce populations. Several of the parameters determined in seedling needles, such as the decrease in water content (nearly 40% reduction in the most sensitive populations), the degradation of chlorophylls, or a low increase of proline levels (up to sevenfold increment in the most sensitive populations but no change in the most tolerant), could be employed as biomarkers for an early assessment of water stress at this stage. Furthermore, seedlings from two of the populations under study responded better to water stress than the other populations and also seemed to be the least affected by osmotic stress during seed germination. Therefore, the determination of these biochemical markers at early seedling stages could represent a useful tool for the initial screening of populations with relatively high tolerance to drought, warranting further research for their potential use in spruce reforestation programmes. es_ES
dc.description.sponsorship This work was partly carried out under the frame of the European Social Fund, Human Resources Development Operational Programme 2007-2013, Project No. POSDRU/159/1.5/S/132765. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Trees es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Biomarkers es_ES
dc.subject Drought es_ES
dc.subject Norway spruce es_ES
dc.subject Reforestation es_ES
dc.subject Seedlings es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.subject.classification BOTANICA es_ES
dc.title Biochemical responses to drought, at the seedling stage, of several Romanian Carpathian populations of Norway spruce (Picea abies L. Karst) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00468-017-1563-1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ESF//POSDRU%2F159%2F1.5%2FS%2F132765/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Schiop, ST.; Al Hassan, M.; Sestras, AF.; Boscaiu, M.; Sestras, RE.; Vicente, O. (2017). Biochemical responses to drought, at the seedling stage, of several Romanian Carpathian populations of Norway spruce (Picea abies L. Karst). Trees. 31(5):1479-1490. https://doi.org/10.1007/s00468-017-1563-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00468-017-1563-1 es_ES
dc.description.upvformatpinicio 1479 es_ES
dc.description.upvformatpfin 1490 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 31 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\347951 es_ES
dc.contributor.funder European Social Fund es_ES
dc.description.references Abdul-Baki AA, Anderson JD (1973) Relationship between decarboxilation of glutamic acid and vigour in soybean seed. Crop Sci 13:222–226 es_ES
dc.description.references Al Hassan M, Martínez Fuertes M, Ramos Sánchez FJ, Vicente O, Boscaiu M (2015) Effects of salt and water stress on plant growth and on accumulation of osmolytes and antioxidant compounds in cherry tomato. Not Bot Horti Agrobo 43:1–11. doi: 10.15835/nbha4319793 es_ES
dc.description.references Al Hassan M, Chaura J, López-Gresa MP, Borsai O, Daniso E, Donat-Torres MP, Mayoral O, Vicente O, Boscaiu M (2016a) Native-invasive plants vs. halophytes in Mediterranean salt marshes: stress tolerance mechanisms in two related species. Front. Plant Sci 7:473. doi: 10.3389/fpls.2016.00473 es_ES
dc.description.references Al Hassan M, López-Gresa MP, Boscaiu M, Vicente O (2016b) Stress tolerance mechanisms in Juncus: responses to salinity and drought in three Juncus species adapted to different natural environments. Funct Plant Biol 43:949–960 es_ES
dc.description.references Al Hassan M, Morosan M, López-Gresa MP, Prohens J, Vicente O, Boscaiu M (2016c) Salinity-induced variation in biochemical markers provides insight into the mechanisms of salt tolerance in common (Phaseolus vulgaris) and runner (P. coccineus) beans. Int J Mol Sci 17:1582. doi: 10.3390/ijms17091582 es_ES
dc.description.references Al Hassan M, Pacurar A, López-Gresa MP, Donat-Torres MP, Llinares JV, Boscaiu M, Vicente O (2016d) Effects of salt stress on three ecologically distinct Plantago species. PLoS One 11(8):e0160236. doi: 10.1371/journal.pone.0160236 es_ES
dc.description.references Al Hassan M, Chaura J, Donat-Torres MP, Boscaiu M, Vicente O (2017) Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB Plants 9(2):plx009. doi: 10.1093/aobpla/plx009 es_ES
dc.description.references Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. doi: 10.1016/j.foreco.2009.09.001 es_ES
dc.description.references Alonso R, Elvira S, Castillo FJ, Gimeno BS (2001) Interactive effects of ozone and drought stress on pigments and activities of antioxidative enzymes in Pinus halepensis. Plant Cell Environ 24:905–916 es_ES
dc.description.references Bartels D, Sunkar T (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58 es_ES
dc.description.references Bates LS, Waldren RP, Teare LD (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. doi: 10.1007/BF00018060 es_ES
dc.description.references Bautista I, Boscaiu M, Lidón A, Llinares JV, Lull C, Donat MP, Mayoral O, Vicente O (2016) Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. Acta Physiol Plant 38:9. doi: 10.1007/s11738-015-2025-2 es_ES
dc.description.references Ben-Gal A, Borochov-Neori H, Yermiyahu U, Shani U (2009) Is osmotic potential a more appropriate property than electrical conductivity for evaluating whole-plant response to salinity? Environ Exp Bot 65:232–237 es_ES
dc.description.references Bhaskaran S, Smith RH, Newton RJ (1985) Physiological changes in cultured Sorghum cells in response to induced water stress. Plant Physiol 79:266–269. doi: 10.1104/pp.79.1.266 es_ES
dc.description.references Blainski A, Lopes GC, de Mello JCP (2013) Application and analysis of the Folin Ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules 18:6852–6865. doi: 10.3390/molecules18066852 es_ES
dc.description.references Bolte A, Ammer C, Löf M, Madsen P, Nabuurs GJ, Schall P, Spathelf P, Rock J (2009) Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand J For Res 24:473–482. doi: 10.1080/02827580903418224 es_ES
dc.description.references Bradshaw RHW, Holmqvist BH, Cowling SA, Sykes MT (2000) The effects of climate change on the distribution and management of Picea abies in southern Scandinavia. Can J For Res 30:1992–1998 es_ES
dc.description.references Clancy KM, Wagner MR, Reich PB (1995) Ecophysiology and insect herbivory. In: Smith WK, Hinckley TM (eds) Ecophysiology of coniferous forests. Academic Press, San Diego, pp 125–180 es_ES
dc.description.references Cuculeanu V, Tuinea P, Bălteanu D (2002) Climate change impacts in Romania: vulnerability and adaptation options. Geo J 57:203–209. doi: 10.1023/B:GEJO.0000003613.15101.d9 es_ES
dc.description.references Cyr DR, Buxton GF, Webb DP, Dumbroff EB (1990) Accumulation of free amino acids in the shoots and roots of three northern conifers during drought. Tree Physiol 6:293–303. doi: 10.1093/treephys/6.3.293 es_ES
dc.description.references Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stocks BJ, Wotton BM (2001) Climate change and forest disturbances. BioScience 51:723–734 es_ES
dc.description.references Ditmarová L, Kurjak D, Palmroth S, Kmet J, Strelcová K (2010) Physiological responses of Norway spruce (Picea abies) seedlings to drought stress. Tree Physiol 30:205–213. doi: 10.1093/treephys/tpp116 es_ES
dc.description.references Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. doi: 10.1021/ac60111a017 es_ES
dc.description.references EEA (2004) Projected temperature changes in Europe up to 2080. http://www.eea.europa.eu . Accessed 16 Aug 2016 es_ES
dc.description.references Ellis RH, Roberts EH (1981) The quantification of aging and survival in orthodox seeds. Seed Sci Technol 9:373–409 es_ES
dc.description.references EUFGIS (2011) Portal Gene reserve forests. European Commission under the Council Regulation (EC) No. 870/2004. http://www.portal.eufgis.org . Accessed 17 Jan 2016 es_ES
dc.description.references Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212. doi: 10.1051/agro:2008021 es_ES
dc.description.references Gall R, Landolt W, Schleppi P, Michellod V, Bucher JB (2002) Water content and bark thickness of Norway spruce (Picea abies) stems: phloem water capacitance and xylem sap flow. Tree Physiol 22:613–623 es_ES
dc.description.references Gil R, Boscaiu M, Lull C, Bautista I, Lidón A, Vicente O (2013) Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Funct Plant Biol 40:805–818 es_ES
dc.description.references Gilliam FS (2016) Forest ecosystems of temperate climatic regions: from ancient use to climate change. New Phytol 212:871–887. doi: 10.1111/nph.14255 es_ES
dc.description.references Green S, Ray D (2009) Potential impacts of drought and disease on forestry in Scotland. Forestry Commission Research Note. http://www.forestry.gov.uk/pdf/FCRN004.pdf/$FILE/FCRN004.pdf . Accessed 29 Aug 2016 es_ES
dc.description.references Grossnickle SC (2000) Ecophysiology of northern spruce species: the performance of planted seedlings. NRC Research Press, Ottawa es_ES
dc.description.references Guo J, Yang Y, Wang G, Yang L, Sun X (2010) Ecophysiological responses of Abies fabri seedlings to drought stress and nitrogen supply. Physiol Plant 139:335–347 es_ES
dc.description.references Hanewinkel M, Cullmann DA, Schelhaas MJ, Nabuurs GJ, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Change 3:203–207. doi: 10.1038/nclimate1687 es_ES
dc.description.references Harb A, Krishnan A, Ambavaram MMR, Pereira A (2010) Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154:1254–1271. doi: 10.1104/pp.110.161752 es_ES
dc.description.references Hart SJ, Veblen TT, Eisenhart KS, Jarvis D, Kulakowski D (2014) Drought induces spruce beetle (Dendroctonus rufipennis) outbreaks across northwestern Colorado. Ecology 95:930–939. doi: 10.1890/13-0230.1 es_ES
dc.description.references Hernández Y, Alegre L, Munné-Bosch S (2004) Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiol 24:1303–1311 es_ES
dc.description.references Heuer B (2010) Role of proline in plant response to drought and salinity. In: Pessarakli M (ed) Handbook of plant and crop stress. CRC Press, Boca Raton, pp 213–238 es_ES
dc.description.references Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438 es_ES
dc.description.references Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105 es_ES
dc.description.references Jansson G, Danusevicius D, Grotehusman H, Kowalczyk J, Krajmerova D, Skroppa T, Wolf H (2013) Norway Spruce (Picea abies (L.) H. Karst. In: Pâques LE (ed) Forest tree breeding in Europe: current state-of-the art and perspectives. Springer, Dordrecht, pp 123–176 es_ES
dc.description.references Ježík M, Blaženec M, Letts MG, Ditmarová L, Sitková Z, Střelcová K (2014) Assessing seasonal drought stress response in Norway spruce (Picea abies (L.) Karst. by monitoring stem circumference and sap flow. Ecohydrology. doi: 10.1002/eco.1536 es_ES
dc.description.references Jiménez S, Dridi J, Gutierrez D, Moret D, Irigoyen JJ, Moreno MA, Gogorcena Y (2013) Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress. Tree Physiol 33:1061–1075 es_ES
dc.description.references Kahle HP, Unseld R, Spiecker H (2005) Forest ecosystems in a changing environment: growth patterns as indicators for stability of Norway spruce within and beyond the limits of its natural range. In: Bohn U, Hettwer C, Gollub G (eds) Application and analysis of the map of the natural vegetation of Europe. Bundesamt für Naturschutz, Bonn, pp 399–409 es_ES
dc.description.references Kantar M, Lucas SJ, Budak H (2011) Drought stress: molecular genetics and genomics approaches. Adv Bot Res 57:445–493 es_ES
dc.description.references Kazda M (2005) Results from the SUSTMAN Project (EU Framework 5, QLK5-CT-2002-00851). http://www.sustman.de . Accessed 30 Aug 2016 es_ES
dc.description.references Kivimäenpää M, Sutinen S, Karlsson PE, Selldén G (2003) Cell structural changes in the needles of Norway spruce exposed to long-term ozone and drought. Ann Bot 92:779–793. doi: 10.1093/aob/mcg202 es_ES
dc.description.references Kolström M, Lindner M, Vilén T, Maroschek M, Seidl R, Lexer MJ, Netherer S, Kremer A, Delzon S, Barbati A, Marchetti M, Corona P (2011) Reviewing the science and implementation of climate change adaptation measures in European forestry. Forests 2:961–982. doi: 10.3390/f2040961 es_ES
dc.description.references Kravka M, Krejzar T, Cermak J (1999) Water content in stem wood of large pine and spruce trees in natural forests in central Sweden. Agric For Meteorol 98–99:555–562 es_ES
dc.description.references Lei Y, Yin C, Li C (2006) Differences in some morphological, physiological and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiol Plant 127:182–191 es_ES
dc.description.references Lévesque M (2013) Drought response of five conifers along an ecological gradient in Central Europe: a multiproxydendroecological analysis. Dissertation, ETH Zurich es_ES
dc.description.references Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592. doi: 10.1042/bst0110591 es_ES
dc.description.references Lindner M (2000) Developing adaptive forest management strategies to cope with climate change. Tree Physiol 20:299–307 es_ES
dc.description.references Maaten-Theunissen M, Kahle HP, Maaten E (2013) Drought sensitivity of Norway spruce is higher than that of silver fir along an altitudinal gradient in south western Germany. Ann For Sci 70:185–193. doi: 10.1007/s13595-012-0241-0 es_ES
dc.description.references Marshall JG, Rutledge RG, Blumwald E, Dumbroff EB (2000) Reduction in turgid water volume in jack pine, white spruce and black spruce in response to drought and paclobutrazol. Tree Physiol 20:701–707 es_ES
dc.description.references McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739. doi: 10.1111/j.1469-8137.2008.02436.x es_ES
dc.description.references Mejnartowicz L, Lewandowski A (2007) Biochemical genetics. In: Mark GT, Adam B, Wladyslaw B (eds) Biology and ecology of Norway spruce. Forestry sciences. Springer, Dordrecht, pp 147–155 es_ES
dc.description.references Miron MS, Sumalan RL (2015) Physiological responses of Norway spruce (Picea abies [L.] Karst) seedlings to drought and overheating stress conditions. JHFB 19:146–151 es_ES
dc.description.references Mitchell AF (1972) Conifers in the British Isles: a descriptive handbook. Forestry Commission Booklet No. 33, HMSO, London es_ES
dc.description.references Modrzynski J (2007) Ecology. In: Tjoelker MG, Boratynski A, Bugala W (eds) Biology and ecology of Norway spruce. Springer, Dordrecht, pp 195–220 es_ES
dc.description.references Montwe D, Spiecker H, Hamann A (2014) An experimentally controlled extreme drought in a Norway spruce forest reveals fast hydraulic response and subsequent recovery of growth rates. Trees 28:891–900. doi: 10.1007/s00468-014-1002-5 es_ES
dc.description.references Morgan JM (1984) Osmoregulation and water stress in higher plants. Annu Rev Plant Physiol 35:299–319 es_ES
dc.description.references Munné-Bosch S, Peñuelas J (2004) Drought-induced oxidative stress in strawberry tree (Arbutus unedo L.) growing in Mediterranean field conditions. Plant Sci 166:1105–1110 es_ES
dc.description.references Munns R, Termaat A (1986) Whole-plant responses to salinity. Aust J Plant Physiol 13:143–160 es_ES
dc.description.references Pardo-Domènech LL, Tifrea A, Grigore MN, Boscaiu M, Vicente O (2015) Proline and glycine betaine accumulation in two succulent halophytes under natural and experimental conditions. Plant Biosyst 150:904–915 es_ES
dc.description.references Patel JA, Vora AB (1985) Free proline accumulation in drought-stressed plants. Plant Soil 84:427–429. doi: 10.1007/BF02275480 es_ES
dc.description.references Popović M, Šuštar V, Gričar J, Štraus I, Torkar G, Kraigher H, de Marco A (2016) Identification of environmental stress biomarkers in seedlings of European beech (Fagus sylvatica) and Scots pine (Pinus sylvestris). Can J For Res 46:58–66 es_ES
dc.description.references Radu S, Contescu L, Herta I, Burza E, Rosca T (1994) Pepiniere- Metode şi procedee pentru cultura în pepinieră a principalelor specii forestiere şi ornamentale. Institutul de Cercetări şi Amenajări Silvice, Bucureşti es_ES
dc.description.references Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731. doi: 10.4161/psb.6.11.17613 es_ES
dc.description.references Rasband WS (1997–2012) ImageJ. US National Institutes of Health, Bethesda, Maryland. http://rsb.info.nih.gov/ij/ . Accessed on 23 Jan 2016 es_ES
dc.description.references Saura-Mas S, Lloret F (2007) Leaf and shoot water content and leaf dry matter content of Mediterranean woody species with different post-fire regenerative strategies. Ann Bot 99:545–554. doi: 10.1093/aob/mcl284 es_ES
dc.description.references Schiop ST, Al Hassan M, Sestras AF, Boscaiu M, Sestras RE, Vicente O (2015) Identification of salt stress biomarkers in Romanian Carpathian populations of Picea abies (L.) Karst. PLoS One 10(8):e0135419. doi: 10.1371/journal.pone.0135419 es_ES
dc.description.references Silvente S, Sobolev AP, Lara M (2012) Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to water stress. PLoS One 7(6):e38554. doi: 10.1371/journal.pone.0038554 es_ES
dc.description.references Spiecker H (2000) Growth of Norway spruce (Picea abies [L.] Karst.) under changing environmental conditions in Europe. In: Klimo E, Hager H, Kulhavy J (eds) Spruce monocultures in Central Europe—problems and prospects, vol 33. European Forest Institute Proceedings, pp 11–26 es_ES
dc.description.references Sudachkova NE, Milyutina IL, Semenova GP (2002) Influence of water deficit on contents of carbohydrates and nitrogenous compounds in Pinus sylvestris L. and Larix sibirica Ledeb. tissues. Eur J For Res 4:1–11 es_ES
dc.description.references Tan W, Blake TJ, Boyle TJB (1992) Drought tolerance in faster- and slower-growing black spruce (Picea mariana) progenies: II. Osmotic adjustment and changes of soluble carbohydrates and amino acids under osmotic stress. Physiol Plant 85:645–651. doi: 10.1111/j.1399-3054.1992.tb04767.x es_ES
dc.description.references Toldi O, Tuba Z, Scott P (2009) Vegetative desiccation tolerance: is it a goldmine for bioengineering crops? Plant Sci 176:187–199. doi: 10.1016/j.plantsci.2008.10.002 es_ES
dc.description.references Walker XJ, Mack MC, Johnstone JF (2015) Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests. Glob Chang Biol 21:3102–3113. doi: 10.1111/gcb.12893 es_ES
dc.description.references Yang Y, Yao Y, Zhang X (2010) Comparison of growth and physiological responses to severe drought between two altitudinal Hippophae rhamnoides populations. Silva Fenn 44:603–614 es_ES
dc.description.references Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559 es_ES
dc.description.references Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71 es_ES
dc.description.references Zrig A, Ben Mohamed H, Tounekti T, Ennajeh M, Valero D, Khemira H (2015) A comparative study of salt tolerance of three almond rootstocks: contribution of organic and inorganic solutes to osmotic adjustment. J Agric Sci Technol 17:675–689 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem