- -

A New Pathway for Protein Haptenation by beta-Lactams

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A New Pathway for Protein Haptenation by beta-Lactams

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez-Ruiz, Raúl es_ES
dc.contributor.author Lence, Emilio es_ES
dc.contributor.author Andreu Ros, María Inmaculada es_ES
dc.contributor.author Limones Herrero, Daniel es_ES
dc.contributor.author González-Bello, Concepción es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.contributor.author Jiménez Molero, María Consuelo es_ES
dc.date.accessioned 2020-09-09T03:31:49Z
dc.date.available 2020-09-09T03:31:49Z
dc.date.issued 2017-10-09 es_ES
dc.identifier.issn 0947-6539 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149647
dc.description "This is the peer reviewed version of the following article: Pérez-Ruíz, Raúl, Emilio Lence, Inmaculada Andreu, Daniel Limones-Herrero, Concepción González-Bello, Miguel A. Miranda, and M. Consuelo Jiménez. 2017. A New Pathway for Protein Haptenation by β-Lactams. Chemistry - A European Journal 23 (56). Wiley: 13986 94. doi:10.1002/chem.201702643, which has been published in final form at https://doi.org/10.1002/chem.201702643. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] The covalent binding of beta-lactams to proteins upon photochemical activation has been demonstrated by using an integrated approach that combines photochemical, proteomic and computational studies, selecting human serum albumin (HSA) as a target protein and ezetimibe (1) as a probe. The results have revealed a novel protein haptenation pathway for this family of drugs that is an alternative to the known nucleophilic ring opening of beta-lactams by the free amino group of lysine residues. Thus, photochemical ring splitting of the beta-lactam ring, following a formal retro-Staudinger reaction, gives a highly reactive ketene intermediate that is trapped by the neighbouring lysine residues, leading to an amide adduct. For the investigated 1/HSA system, covalent modification of residues Lys414 and Lys525, which are located in sub-domains IIIA and IIIB, respectively, occurs. The observed photobinding may constitute the key step in the sequence of events leading to photoallergy. Docking and molecular dynamics simulation studies provide an insight into the molecular basis of the selectivity of 1 for these HSA sub-domains and the covalent modification mechanism. Computational studies also reveal positive cooperative binding of sub-domain IIIB that explains the experimentally observed modification of Lys414, which is located in a barely accessible pocket (sub-domain IIIA). es_ES
dc.description.sponsorship Financial support from Ministerio de Economia, Industria y Competitividad (CTQ2013-47872-C2-1-P, CTQ2016-78875-P, SAF2013-42899-R, SAF2016-75638-R), Instituto de Salud Carlos III (RD12/0013/0009 and RD16/0006/0030), Generalitat Valenciana (PROMETEOII/2013/005), Xunta de Galicia (Centro singular de investigacion de Galicia accreditation 2016-2019, ED431G/09) and European Union (European Regional Development Fund -ERDF) is gratefully acknowledged. E.L. thanks the Xunta de Galicia for a postdoctoral fellowship. We are grateful to the Centro de Supercomputacion de Galicia (CESGA) for use of the Finis Terrae II supercomputer. The proteomic analysis was performed in the proteomics facility of SCSIE University of Valencia that belongs to ProteoRed PRB2-ISCIII and is supported by grant PT13/0001, of the PE I+D+i 2013-2016, funded by ISCIII and FEDER. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Allergy es_ES
dc.subject Lactams es_ES
dc.subject Molecular dynamics es_ES
dc.subject Photochemistry es_ES
dc.subject Proteins es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title A New Pathway for Protein Haptenation by beta-Lactams es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.201702643 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2016-78875-P/ES/CONTROL SUPRAMOLECULAR DE LA FOTORREACTIVIDAD EN MEDIOS MICROHETEROGENOS BASADOS EN AMINOACIDOS: GELES MOLECULARES Y PROTEINAS TRANSPORTADORAS COMO NANORREACTORES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SAF2016-75638-R/ES/DESARROLLO DE NUEVOS FARMACOS PARA EL TRATAMIENTO DE LAS INFECCIONES BACTERIANAS MULTIRESISTENTES: APROXIMACIONES QUE INCIDEN SOBRE VIABILIDAD, RESISTENCIA Y VIRULENCIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Xunta de Galicia//ED431G%2F09/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PT13%2F0001/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2013-47872-C2-1-P/ES/METABOLITOS FOTOACTIVOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SAF2013-42899-R/ES/DESARROLLO DE NUEVOS ANTIBIOTICOS PARA EL TRATAMIENTO DE INFECCIONES BACTERIANAS RESISTENTES: METABOLISMO, RESISTENCIA Y COMUNICACION CELULA-CELULA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RD12%2F0013%2F0009/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F005/ES/ESPECIES FOTOACTIVAS Y SU INTERACCION CON BIOMOLECULAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RD16%2F0006%2F0030/ES/Asma, Reacciones Adversas y Alérgicas (ARADYAL)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Pérez-Ruiz, R.; Lence, E.; Andreu Ros, MI.; Limones Herrero, D.; González-Bello, C.; Miranda Alonso, MÁ.; Jiménez Molero, MC. (2017). A New Pathway for Protein Haptenation by beta-Lactams. Chemistry - A European Journal. 23(56):13986-13994. https://doi.org/10.1002/chem.201702643 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/chem.201702643 es_ES
dc.description.upvformatpinicio 13986 es_ES
dc.description.upvformatpfin 13994 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 56 es_ES
dc.identifier.pmid 28791745 es_ES
dc.relation.pasarela S\353393 es_ES
dc.contributor.funder Xunta de Galicia es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Van Boeckel, T. P., Gandra, S., Ashok, A., Caudron, Q., Grenfell, B. T., Levin, S. A., & Laxminarayan, R. (2014). Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. The Lancet Infectious Diseases, 14(8), 742-750. doi:10.1016/s1473-3099(14)70780-7 es_ES
dc.description.references Elander, R. P. (2003). Industrial production of β-lactam antibiotics. Applied Microbiology and Biotechnology, 61(5-6), 385-392. doi:10.1007/s00253-003-1274-y es_ES
dc.description.references Rodriguez-Pena, R., Antunez, C., Martin, E., Blanca-Lopez, N., Mayorga, C., & Torres, M. J. (2005). Allergic reactions to β-lactams. Expert Opinion on Drug Safety, 5(1), 31-48. doi:10.1517/14740338.5.1.31 es_ES
dc.description.references Blanca, M., Romano, A., Torres, M. J., Férnandez, J., Mayorga, C., Rodriguez, J., … Atanasković-Marković, M. (2009). Update on the evaluation of hypersensitivity reactions to betalactams. Allergy, 64(2), 183-193. doi:10.1111/j.1398-9995.2008.01924.x es_ES
dc.description.references Solensky, R. (2014). Penicillin allergy as a public health measure. Journal of Allergy and Clinical Immunology, 133(3), 797-798. doi:10.1016/j.jaci.2013.10.032 es_ES
dc.description.references Romano, A., Mayorga, C., Torres, M. J., Artesani, M. C., Suau, R., Sánchez, F., … Blanca, M. (2000). Immediate allergic reactions to cephalosporins: Cross-reactivity and selective responses. Journal of Allergy and Clinical Immunology, 106(6), 1177-1183. doi:10.1067/mai.2000.111147 es_ES
dc.description.references Prescott, Jr., W. A., DePestel, D. D., Ellis, J. J., & Regal, R. E. (2004). Incidence of Carbapenem‐Associated Allergic‐Type Reactions among Patients with versus Patients without a Reported Penicillin Allergy. Clinical Infectious Diseases, 38(8), 1102-1107. doi:10.1086/382880 es_ES
dc.description.references Torres, M. J., Ariza, A., Mayorga, C., Doña, I., Blanca-Lopez, N., Rondon, C., & Blanca, M. (2010). Clavulanic acid can be the component in amoxicillin-clavulanic acid responsible for immediate hypersensitivity reactions. Journal of Allergy and Clinical Immunology, 125(2), 502-505.e2. doi:10.1016/j.jaci.2009.11.032 es_ES
dc.description.references Fernandez-Rivas, M., Carral, C. P., Cuevas, M., Marti, C., Moral, A., & Senent, C. J. (1995). Selective allergic reactions to clavulanic acid☆☆☆★. Journal of Allergy and Clinical Immunology, 95(3), 748-750. doi:10.1016/s0091-6749(95)70181-8 es_ES
dc.description.references Baggaley, K. H., Brown, A. G., & Schofield, C. J. (1997). Chemistry and biosynthesis of clavulanic acid and other clavams. Natural Product Reports, 14(4), 309. doi:10.1039/np9971400309 es_ES
dc.description.references Edwards, R. G., Dewdney, J. M., Dobrzanski, R. J., & Lee, D. (1988). Immunogenicity and Allergenicity Studies on Two Beta-Lactam Structures, a Clavam, Clavulanic Acid, and a Carbapenem: Structure-Activity Relationships. International Archives of Allergy and Immunology, 85(2), 184-189. doi:10.1159/000234500 es_ES
dc.description.references Gerberick, G. F., Troutman, J. A., Foertsch, L. M., Vassallo, J. D., Quijano, M., Dobson, R. L. M., … Lepoittevin, J.-P. (2009). Investigation of Peptide Reactivity of Pro-hapten Skin Sensitizers Using a Peroxidase-Peroxide Oxidation System. Toxicological Sciences, 112(1), 164-174. doi:10.1093/toxsci/kfp192 es_ES
dc.description.references Martin, S. F., Esser, P. R., Schmucker, S., Dietz, L., Naisbitt, D. J., Park, B. K., … Sallusto, F. (2010). T-cell recognition of chemicals, protein allergens and drugs: towards the development of in vitro assays. Cellular and Molecular Life Sciences, 67(24), 4171-4184. doi:10.1007/s00018-010-0495-3 es_ES
dc.description.references Chipinda, I., Hettick, J. M., & Siegel, P. D. (2011). Haptenation: Chemical Reactivity and Protein Binding. Journal of Allergy, 2011, 1-11. doi:10.1155/2011/839682 es_ES
dc.description.references Schnyder, B., & Pichler, W. J. (2009). Mechanisms of Drug-Induced Allergy. Mayo Clinic Proceedings, 84(3), 268-272. doi:10.4065/84.3.268 es_ES
dc.description.references DiPiro, J. T., Adkinson, N. F., & Hamilton, R. G. (1993). Facilitation of penicillin haptenation to serum proteins. Antimicrobial Agents and Chemotherapy, 37(7), 1463-1467. doi:10.1128/aac.37.7.1463 es_ES
dc.description.references Naisbitt, D. J., Nattrass, R. G., & Ogese, M. O. (2014). In Vitro Diagnosis of Delayed-type Drug Hypersensitivity. Immunology and Allergy Clinics of North America, 34(3), 691-705. doi:10.1016/j.iac.2014.04.009 es_ES
dc.description.references Torres, M. J., Blanca, M., Fernandez, J., Romano, A., Weck, A., … Aberer, W. (2003). Diagnosis of immediate allergic reactions to beta-lactam antibiotics. Allergy, 58(10), 961-972. doi:10.1034/j.1398-9995.2003.00280.x es_ES
dc.description.references Levine, B. B., & Ovary, Z. (1961). STUDIES ON THE MECHANISM OF THE FORMATION OF THE PENICILLIN ANTIGEN. Journal of Experimental Medicine, 114(6), 875-940. doi:10.1084/jem.114.6.875 es_ES
dc.description.references Perez-Inestrosa, E., Suau, R., Montañez, M. I., Rodriguez, R., Mayorga, C., Torres, M. J., & Blanca, M. (2005). Cephalosporin chemical reactivity and its immunological implications. Current Opinion in Allergy and Clinical Immunology, 5(4), 323-330. doi:10.1097/01.all.0000173788.73401.69 es_ES
dc.description.references Sánchez-Sancho, F., Perez-Inestrosa, E., Suau, R., Montañez, M. I., Mayorga, C., Torres, M. J., … Blanca, M. (2003). Synthesis, characterization and immunochemical evaluation of cephalosporin antigenic determinants. Journal of Molecular Recognition, 16(3), 148-156. doi:10.1002/jmr.621 es_ES
dc.description.references Moreno, F., Blanca, M., Mayorga, C., Terrados, S., Moya, M., Pérez, E., … Carmona, M. J. (1995). Studies of the Specificities of IgE Antibodies Found in Sera from Subjects with Allergic Reactions to Penicillins. International Archives of Allergy and Immunology, 108(1), 74-81. doi:10.1159/000237121 es_ES
dc.description.references De Haan, P., de Jonge, A. J. R., Verbrugge, T., & Boorsma, D. M. (1985). Three Epitope-Specific Monoclonal Antibodies against the Hapten Penicillin. International Archives of Allergy and Immunology, 76(1), 42-46. doi:10.1159/000233659 es_ES
dc.description.references Mayorgaa, C., Obispo, T., Jimeno, L., Blanca, M., Del Prado, J. M., Carreira, J., … Juarez, C. (1995). Epitope mapping of β-lactam antibiotics with the use of monoclonal antibodies. Toxicology, 97(1-3), 225-234. doi:10.1016/0300-483x(94)02983-2 es_ES
dc.description.references Meng, X., Jenkins, R. E., Berry, N. G., Maggs, J. L., Farrell, J., Lane, C. S., … Park, B. K. (2011). Direct Evidence for the Formation of Diastereoisomeric Benzylpenicilloyl Haptens from Benzylpenicillin and Benzylpenicillenic Acid in Patients. Journal of Pharmacology and Experimental Therapeutics, 338(3), 841-849. doi:10.1124/jpet.111.183871 es_ES
dc.description.references BATCHELOR, F. R., DEWDNEY, J. M., & GAZZARD, D. (1965). Penicillin Allergy: The Formation of the Penicilloyl Determinant. Nature, 206(4982), 362-364. doi:10.1038/206362a0 es_ES
dc.description.references Ariza, A., Garzon, D., Abánades, D. R., de los Ríos, V., Vistoli, G., Torres, M. J., … Pérez-Sala, D. (2012). Protein haptenation by amoxicillin: High resolution mass spectrometry analysis and identification of target proteins in serum. Journal of Proteomics, 77, 504-520. doi:10.1016/j.jprot.2012.09.030 es_ES
dc.description.references Blanca, M., Mayorga, C., Sanchez, F., Vega, J. M., Fernandez, J., Juarez, C., … Perez, E. (1991). Differences in serum IgE antibody activity to benzylpenicillin and amoxicillin measured by RAST in a group of penicillin allergic patients. Allergy, 46(8), 632-638. doi:10.1111/j.1398-9995.1991.tb00635.x es_ES
dc.description.references Kelkar, P. S., & Li, J. T.-C. (2001). Cephalosporin Allergy. New England Journal of Medicine, 345(11), 804-809. doi:10.1056/nejmra993637 es_ES
dc.description.references Fasano, M., Curry, S., Terreno, E., Galliano, M., Fanali, G., Narciso, P., … Ascenzi, P. (2005). The extraordinary ligand binding properties of human serum albumin. IUBMB Life (International Union of Biochemistry and Molecular Biology: Life), 57(12), 787-796. doi:10.1080/15216540500404093 es_ES
dc.description.references Ghuman, J., Zunszain, P. A., Petitpas, I., Bhattacharya, A. A., Otagiri, M., & Curry, S. (2005). Structural Basis of the Drug-binding Specificity of Human Serum Albumin. Journal of Molecular Biology, 353(1), 38-52. doi:10.1016/j.jmb.2005.07.075 es_ES
dc.description.references Garzon, D., Ariza, A., Regazzoni, L., Clerici, R., Altomare, A., Sirtori, F. R., … Aldini, G. (2014). Mass Spectrometric Strategies for the Identification and Characterization of Human Serum Albumin Covalently Adducted by Amoxicillin: Ex Vivo Studies. Chemical Research in Toxicology, 27(9), 1566-1574. doi:10.1021/tx500210e es_ES
dc.description.references Kosoglou, T., Statkevich, P., Johnson-Levonas, A. O., Paolini, J. F., Bergman, A. J., & Alton, K. B. (2005). Ezetimibe. Clinical Pharmacokinetics, 44(5), 467-494. doi:10.2165/00003088-200544050-00002 es_ES
dc.description.references Baťová, J., Imramovský, A., HájÍček, J., Hejtmánková, L., & Hanusek, J. (2014). Kinetics and Mechanism of the Base-Catalyzed Rearrangement and Hydrolysis of Ezetimibe. Journal of Pharmaceutical Sciences, 103(8), 2240-2247. doi:10.1002/jps.24070 es_ES
dc.description.references Baťová, J., Imramovský, A., & Hanusek, J. (2015). Aminolysis of ezetimibe. Journal of Pharmaceutical and Biomedical Analysis, 107, 495-500. doi:10.1016/j.jpba.2015.01.019 es_ES
dc.description.references Fischer, M. (1968). Photochemische Reaktionen, IV. Photochemische Fragmentierungen von β-Lactamen. Chemische Berichte, 101(8), 2669-2678. doi:10.1002/cber.19681010809 es_ES
dc.description.references Fabre, H., Ibork, H., & Lerner, D. A. (1994). Photoisomerization Kinetics of Cefuroxime Axetil and Related Compounds. Journal of Pharmaceutical Sciences, 83(4), 553-558. doi:10.1002/jps.2600830422 es_ES
dc.description.references Rossi, E., Abbiati, G., & Pini, E. (1999). Substituted 1-benzyl-4-(benzylidenimino)-4-phenylazetidin-2-ones: Synthesis, thermal and photochemical reactions. Tetrahedron, 55(22), 6961-6970. doi:10.1016/s0040-4020(99)00325-7 es_ES
dc.description.references Gómez-Gallego, M., Alcázar, R., Ramírez, P., Vincente, R., J. Mancheño, M., & A. Sierra, M. (2001). A Study of the Photochemical Isomerization in b-Lactam Rings. HETEROCYCLES, 55(3), 511. doi:10.3987/com-00-9127 es_ES
dc.description.references MUKERJEE, A. K., & SINGH, A. K. (1975). Reactions of Natural and Synthetic β-Lactams. Synthesis, 1975(09), 547-589. doi:10.1055/s-1975-23842 es_ES
dc.description.references Mukerjee, A. K., & Singh, A. K. (1978). β-Lactams: retrospect and prospect. Tetrahedron, 34(12), 1731-1767. doi:10.1016/0040-4020(78)80209-9 es_ES
dc.description.references Pérez-Ruiz, R., Sáez, J. A., Jiménez, M. C., & Miranda, M. A. (2014). Cycloreversion of β-lactams via photoinduced electron transfer. Org. Biomol. Chem., 12(42), 8428-8432. doi:10.1039/c4ob01416b es_ES
dc.description.references Pérez-Ruiz, R., Sáez, J. A., Domingo, L. R., Jiménez, M. C., & Miranda, M. A. (2012). Ring splitting of azetidin-2-ones via radical anions. Organic & Biomolecular Chemistry, 10(39), 7928. doi:10.1039/c2ob26528a es_ES
dc.description.references Zhou, L., Liu, X., Ji, J., Zhang, Y., Wu, W., Liu, Y., … Feng, X. (2014). Regio- and Enantioselective Baeyer–Villiger Oxidation: Kinetic Resolution of Racemic 2-Substituted Cyclopentanones. Organic Letters, 16(15), 3938-3941. doi:10.1021/ol501737a es_ES
dc.description.references Andersen, M. L., Benneche, T., Undheim, K., de Azevedo, N. R., Ferri, P. H., Pedersen, K. R., … Weinhold, E. G. (1996). Substituent Effects on Homolytic Bond Dissociation Free Energies of Oxygen--Acetyl Bonds in Phenyl Acetates and Nitrogen--Acetyl Bonds in Acetanilides. Acta Chemica Scandinavica, 50, 1045-1049. doi:10.3891/acta.chem.scand.50-1045 es_ES
dc.description.references Dobbins, R. A., Mohammed, K., & Sullivan, D. A. (1988). Pressure and Density Series Equations of State for Steam as Derived from the Haar–Gallagher–Kell Formulation. Journal of Physical and Chemical Reference Data, 17(1), 1-8. doi:10.1063/1.555819 es_ES
dc.description.references Jisha, V. S., Arun, K. T., Hariharan, M., & Ramaiah, D. (2006). Site-Selective Binding and Dual Mode Recognition of Serum Albumin by a Squaraine Dye. Journal of the American Chemical Society, 128(18), 6024-6025. doi:10.1021/ja061301x es_ES
dc.description.references Lucas, L. H., Price, K. E., & Larive, C. K. (2004). Epitope Mapping and Competitive Binding of HSA Drug Site II Ligands by NMR Diffusion Measurements. Journal of the American Chemical Society, 126(43), 14258-14266. doi:10.1021/ja0479538 es_ES
dc.description.references Epps, D. E., Raub, T. J., & Kezdy, F. J. (1995). A General, Wide-Range Spectrofluorometric Method for Measuring the Site-Specific Affinities of Drugs Toward Human Serum Albumin. Analytical Biochemistry, 227(2), 342-350. doi:10.1006/abio.1995.1290 es_ES
dc.description.references Marin, M., Lhiaubet-Vallet, V., & Miranda, M. A. (2011). Site-Dependent Photo-Fries Rearrangement within Serum Albumins. The Journal of Physical Chemistry B, 115(12), 2910-2915. doi:10.1021/jp2009463 es_ES
dc.description.references Li, Z.-M., Wei, C.-W., Zhang, Y., Wang, D.-S., & Liu, Y.-N. (2011). Investigation of competitive binding of ibuprofen and salicylic acid with serum albumin by affinity capillary electrophoresis. Journal of Chromatography B, 879(21), 1934-1938. doi:10.1016/j.jchromb.2011.05.020 es_ES
dc.description.references Aleksic, M., Pease, C. K., Basketter, D. A., Panico, M., Morris, H. R., & Dell, A. (2007). Investigating protein haptenation mechanisms of skin sensitisers using human serum albumin as a model protein. Toxicology in Vitro, 21(4), 723-733. doi:10.1016/j.tiv.2007.01.008 es_ES
dc.description.references Carter, D., He, X., Munson, S., Twigg, P., Gernert, K., Broom, M., & Miller, T. (1989). Three-dimensional structure of human serum albumin. Science, 244(4909), 1195-1198. doi:10.1126/science.2727704 es_ES
dc.description.references Carter, D., & He, X. (1990). Structure of human serum albumin. Science, 249(4966), 302-303. doi:10.1126/science.2374930 es_ES
dc.description.references http://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold/ es_ES
dc.description.references Sivertsen, A., Isaksson, J., Leiros, H.-K. S., Svenson, J., Svendsen, J.-S., & Brandsdal, B. (2014). Synthetic cationic antimicrobial peptides bind with their hydrophobic parts to drug site II of human serum albumin. BMC Structural Biology, 14(1), 4. doi:10.1186/1472-6807-14-4 es_ES
dc.description.references Gordon, J. C., Myers, J. B., Folta, T., Shoja, V., Heath, L. S., & Onufriev, A. (2005). H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Research, 33(Web Server), W368-W371. doi:10.1093/nar/gki464 es_ES
dc.description.references http://biophysics.cs.vt.edu/H++ es_ES
dc.description.references Curry, S., Mandelkow, H., Brick, P., & Franks, N. (1998). Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nature Structural Biology, 5(9), 827-835. doi:10.1038/1869 es_ES
dc.description.references Sugio, S., Kashima, A., Mochizuki, S., Noda, M., & Kobayashi, K. (1999). Crystal structure of human serum albumin at 2.5 Å resolution. Protein Engineering, Design and Selection, 12(6), 439-446. doi:10.1093/protein/12.6.439 es_ES
dc.description.references Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. Journal of Chemical Theory and Computation, 8(9), 3314-3321. doi:10.1021/ct300418h es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem