- -

Spectral decomposition of single-tone-driven quantum phase modulation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spectral decomposition of single-tone-driven quantum phase modulation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Capmany Francoy, José es_ES
dc.contributor.author Fernandez-Pousa, Carlos R. es_ES
dc.date.accessioned 2020-09-09T03:31:52Z
dc.date.available 2020-09-09T03:31:52Z
dc.date.issued 2011-02-14 es_ES
dc.identifier.issn 0953-4075 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149648
dc.description.abstract [EN] Electro-optic phase modulators driven by a single radio-frequency tone ¿ can be described at the quantum level as scattering devices where input single-mode radiation undergoes energy changes in multiples of h¿. In this paper, we study the spectral representation of the unitary, multimode scattering operator describing these devices. The eigenvalue equation, phase modulation being a process preserving the photon number, is solved at each subspace with definite number of photons. In the one-photon subspace F 1, the problem is equivalent to the computation of the continuous spectrum of the Susskind-Glogower cosine operator of the harmonic oscillator. Using this analogy, the spectral decomposition in F1 is constructed and shown to be equivalent to the usual Fock-space representation. The result is then generalized to arbitrary N-photon subspaces, where eigenvectors are symmetrized combinations of N one-photon eigenvectors and the continuous spectrum spans the entire unit circle. Approximate normalizable one-photon eigenstates are constructed in terms of London phase states truncated to optical bands. Finally, we show that synchronous ultrashort pulse trains represent classical field configurations with the same structure as these approximate eigenstates, and that they can be considered as approximate eigenvectors of the classical formulation of phase modulation. © 2011 IOP Publishing Ltd. es_ES
dc.description.sponsorship The authors acknowledge support from the Spanish Government through project TEC2008-02606 and project Quantum Optical Information Technology, QOIT, a CONSOLIDER-INGENIO 2010 Project; and also from Generalitat Valenciana through the PROMETEO research excellency award programme GVA PROMETEO 2008/092 es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof Journal of Physics B Atomic Molecular and Optical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Classical fields es_ES
dc.subject Continuous spectrum es_ES
dc.subject Eigenstates es_ES
dc.subject Eigenvalue equations es_ES
dc.subject Eigenvectors es_ES
dc.subject Electrooptic phase modulator es_ES
dc.subject Energy changes es_ES
dc.subject Harmonic oscillators es_ES
dc.subject Multimodes es_ES
dc.subject Optical bands es_ES
dc.subject Phase state es_ES
dc.subject Photon numbers es_ES
dc.subject Quantum levels es_ES
dc.subject Radio frequencies es_ES
dc.subject Scattering operators es_ES
dc.subject Single-mode radiation es_ES
dc.subject Spectral decomposition es_ES
dc.subject Spectral representations es_ES
dc.subject Unit circles es_ES
dc.subject Dielectric losses es_ES
dc.subject Locomotives es_ES
dc.subject Mathematical operators es_ES
dc.subject Multiphoton processes es_ES
dc.subject Oscillators (electronic) es_ES
dc.subject Phase modulation es_ES
dc.subject Photons es_ES
dc.subject Quantum theory es_ES
dc.subject Railroad cars es_ES
dc.subject Eigenvalues and eigenfunctions es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Spectral decomposition of single-tone-driven quantum phase modulation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/0953-4075/44/3/035506 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2008-02606/ES/CONVERTIDORES ACTIVOS LASER PARA SISTEMAS DE COMUNICACIONES Y FOTONICA DE MICROONDAS./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO08%2F2008%2F092/ES/Tecnologias y aplicaciones avanzadas y emergentes de la fotonica de microondas (microwave photonics advanced and emergent technologies and applications)/ / es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Capmany Francoy, J.; Fernandez-Pousa, CR. (2011). Spectral decomposition of single-tone-driven quantum phase modulation. Journal of Physics B Atomic Molecular and Optical Physics. 44(3):35506-35506. https://doi.org/10.1088/0953-4075/44/3/035506 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1088/0953-4075/44/3/035506 es_ES
dc.description.upvformatpinicio 35506 es_ES
dc.description.upvformatpfin 35506 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 44 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\216932 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Chapuran, T. E., Toliver, P., Peters, N. A., Jackel, J., Goodman, M. S., Runser, R. J., … Dardy, H. (2009). Optical networking for quantum key distribution and quantum communications. New Journal of Physics, 11(10), 105001. doi:10.1088/1367-2630/11/10/105001 es_ES
dc.description.references Kolchin, P., Belthangady, C., Du, S., Yin, G. Y., & Harris, S. E. (2008). Electro-Optic Modulation of Single Photons. Physical Review Letters, 101(10). doi:10.1103/physrevlett.101.103601 es_ES
dc.description.references Specht, H. P., Bochmann, J., Mücke, M., Weber, B., Figueroa, E., Moehring, D. L., & Rempe, G. (2009). Phase shaping of single-photon wave packets. Nature Photonics, 3(8), 469-472. doi:10.1038/nphoton.2009.115 es_ES
dc.description.references Harris, S. E. (2008). Nonlocal modulation of entangled photons. Physical Review A, 78(2). doi:10.1103/physreva.78.021807 es_ES
dc.description.references Sensarn, S., Yin, G. Y., & Harris, S. E. (2009). Observation of Nonlocal Modulation with Entangled Photons. Physical Review Letters, 103(16). doi:10.1103/physrevlett.103.163601 es_ES
dc.description.references Mérolla, J.-M., Mazurenko, Y., Goedgebuer, J.-P., Duraffourg, L., Porte, H., & Rhodes, W. T. (1999). Quantum cryptographic device using single-photon phase modulation. Physical Review A, 60(3), 1899-1905. doi:10.1103/physreva.60.1899 es_ES
dc.description.references Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N. J., & Grangier, P. (2003). Quantum key distribution using gaussian-modulated coherent states. Nature, 421(6920), 238-241. doi:10.1038/nature01289 es_ES
dc.description.references Tsang, M., & Psaltis, D. (2006). Propagation of temporal entanglement. Physical Review A, 73(1). doi:10.1103/physreva.73.013822 es_ES
dc.description.references Tsang, M., Shapiro, J. H., & Lloyd, S. (2008). Quantum theory of optical temporal phase and instantaneous frequency. Physical Review A, 78(5). doi:10.1103/physreva.78.053820 es_ES
dc.description.references Tsang, M., Shapiro, J. H., & Lloyd, S. (2009). Quantum theory of optical temporal phase and instantaneous frequency. II. Continuous-time limit and state-variable approach to phase-locked loop design. Physical Review A, 79(5). doi:10.1103/physreva.79.053843 es_ES
dc.description.references Bloch, M., McLaughlin, S. W., Merolla, J.-M., & Patois, F. (2007). Frequency-coded quantum key distribution. Optics Letters, 32(3), 301. doi:10.1364/ol.32.000301 es_ES
dc.description.references Kumar, P., & Prabhakar, A. (2009). Evolution of Quantum States in an Electro-Optic Phase Modulator. IEEE Journal of Quantum Electronics, 45(2), 149-156. doi:10.1109/jqe.2008.2002673 es_ES
dc.description.references Olislager, L., Cussey, J., Nguyen, A. T., Emplit, P., Massar, S., Merolla, J.-M., & Huy, K. P. (2010). Frequency-bin entangled photons. Physical Review A, 82(1). doi:10.1103/physreva.82.013804 es_ES
dc.description.references Capmany, J., & Fernández-Pousa, C. R. (2010). Quantum model for electro-optical phase modulation. Journal of the Optical Society of America B, 27(6), A119. doi:10.1364/josab.27.00a119 es_ES
dc.description.references Susskind, L., & Glogower, J. (1964). Quantum mechanical phase and time operator. Physics Physique Fizika, 1(1), 49-61. doi:10.1103/physicsphysiquefizika.1.49 es_ES
dc.description.references CARRUTHERS, P., & NIETO, M. M. (1968). Phase and Angle Variables in Quantum Mechanics. Reviews of Modern Physics, 40(2), 411-440. doi:10.1103/revmodphys.40.411 es_ES
dc.description.references Pegg, D. T., & Barnett, S. M. (1988). Unitary Phase Operator in Quantum Mechanics. Europhysics Letters (EPL), 6(6), 483-487. doi:10.1209/0295-5075/6/6/002 es_ES
dc.description.references Lynch, R. (1995). The quantum phase problem: a critical review. Physics Reports, 256(6), 367-436. doi:10.1016/0370-1573(94)00095-k es_ES
dc.description.references Barnett, S. M., & Vaccaro, J. A. (Eds.). (2007). The Quantum Phase Operator. doi:10.1201/b16006 es_ES
dc.description.references Blow, K. J., Loudon, R., Phoenix, S. J. D., & Shepherd, T. J. (1990). Continuum fields in quantum optics. Physical Review A, 42(7), 4102-4114. doi:10.1103/physreva.42.4102 es_ES
dc.description.references D’Ariano, G. M., & Paris, M. G. A. (1993). Necessity of sine-cosine joint measurement. Physical Review A, 48(6), R4039-R4042. doi:10.1103/physreva.48.r4039 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem