Mostrar el registro sencillo del ítem
dc.contributor.author | Capmany Francoy, José | es_ES |
dc.contributor.author | Fernandez-Pousa, Carlos R. | es_ES |
dc.date.accessioned | 2020-09-09T03:31:52Z | |
dc.date.available | 2020-09-09T03:31:52Z | |
dc.date.issued | 2011-02-14 | es_ES |
dc.identifier.issn | 0953-4075 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/149648 | |
dc.description.abstract | [EN] Electro-optic phase modulators driven by a single radio-frequency tone ¿ can be described at the quantum level as scattering devices where input single-mode radiation undergoes energy changes in multiples of h¿. In this paper, we study the spectral representation of the unitary, multimode scattering operator describing these devices. The eigenvalue equation, phase modulation being a process preserving the photon number, is solved at each subspace with definite number of photons. In the one-photon subspace F 1, the problem is equivalent to the computation of the continuous spectrum of the Susskind-Glogower cosine operator of the harmonic oscillator. Using this analogy, the spectral decomposition in F1 is constructed and shown to be equivalent to the usual Fock-space representation. The result is then generalized to arbitrary N-photon subspaces, where eigenvectors are symmetrized combinations of N one-photon eigenvectors and the continuous spectrum spans the entire unit circle. Approximate normalizable one-photon eigenstates are constructed in terms of London phase states truncated to optical bands. Finally, we show that synchronous ultrashort pulse trains represent classical field configurations with the same structure as these approximate eigenstates, and that they can be considered as approximate eigenvectors of the classical formulation of phase modulation. © 2011 IOP Publishing Ltd. | es_ES |
dc.description.sponsorship | The authors acknowledge support from the Spanish Government through project TEC2008-02606 and project Quantum Optical Information Technology, QOIT, a CONSOLIDER-INGENIO 2010 Project; and also from Generalitat Valenciana through the PROMETEO research excellency award programme GVA PROMETEO 2008/092 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing | es_ES |
dc.relation.ispartof | Journal of Physics B Atomic Molecular and Optical Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Classical fields | es_ES |
dc.subject | Continuous spectrum | es_ES |
dc.subject | Eigenstates | es_ES |
dc.subject | Eigenvalue equations | es_ES |
dc.subject | Eigenvectors | es_ES |
dc.subject | Electrooptic phase modulator | es_ES |
dc.subject | Energy changes | es_ES |
dc.subject | Harmonic oscillators | es_ES |
dc.subject | Multimodes | es_ES |
dc.subject | Optical bands | es_ES |
dc.subject | Phase state | es_ES |
dc.subject | Photon numbers | es_ES |
dc.subject | Quantum levels | es_ES |
dc.subject | Radio frequencies | es_ES |
dc.subject | Scattering operators | es_ES |
dc.subject | Single-mode radiation | es_ES |
dc.subject | Spectral decomposition | es_ES |
dc.subject | Spectral representations | es_ES |
dc.subject | Unit circles | es_ES |
dc.subject | Dielectric losses | es_ES |
dc.subject | Locomotives | es_ES |
dc.subject | Mathematical operators | es_ES |
dc.subject | Multiphoton processes | es_ES |
dc.subject | Oscillators (electronic) | es_ES |
dc.subject | Phase modulation | es_ES |
dc.subject | Photons | es_ES |
dc.subject | Quantum theory | es_ES |
dc.subject | Railroad cars | es_ES |
dc.subject | Eigenvalues and eigenfunctions | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Spectral decomposition of single-tone-driven quantum phase modulation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/0953-4075/44/3/035506 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2008-02606/ES/CONVERTIDORES ACTIVOS LASER PARA SISTEMAS DE COMUNICACIONES Y FOTONICA DE MICROONDAS./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO08%2F2008%2F092/ES/Tecnologias y aplicaciones avanzadas y emergentes de la fotonica de microondas (microwave photonics advanced and emergent technologies and applications)/ / | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Capmany Francoy, J.; Fernandez-Pousa, CR. (2011). Spectral decomposition of single-tone-driven quantum phase modulation. Journal of Physics B Atomic Molecular and Optical Physics. 44(3):35506-35506. https://doi.org/10.1088/0953-4075/44/3/035506 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1088/0953-4075/44/3/035506 | es_ES |
dc.description.upvformatpinicio | 35506 | es_ES |
dc.description.upvformatpfin | 35506 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 44 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\216932 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Chapuran, T. E., Toliver, P., Peters, N. A., Jackel, J., Goodman, M. S., Runser, R. J., … Dardy, H. (2009). Optical networking for quantum key distribution and quantum communications. New Journal of Physics, 11(10), 105001. doi:10.1088/1367-2630/11/10/105001 | es_ES |
dc.description.references | Kolchin, P., Belthangady, C., Du, S., Yin, G. Y., & Harris, S. E. (2008). Electro-Optic Modulation of Single Photons. Physical Review Letters, 101(10). doi:10.1103/physrevlett.101.103601 | es_ES |
dc.description.references | Specht, H. P., Bochmann, J., Mücke, M., Weber, B., Figueroa, E., Moehring, D. L., & Rempe, G. (2009). Phase shaping of single-photon wave packets. Nature Photonics, 3(8), 469-472. doi:10.1038/nphoton.2009.115 | es_ES |
dc.description.references | Harris, S. E. (2008). Nonlocal modulation of entangled photons. Physical Review A, 78(2). doi:10.1103/physreva.78.021807 | es_ES |
dc.description.references | Sensarn, S., Yin, G. Y., & Harris, S. E. (2009). Observation of Nonlocal Modulation with Entangled Photons. Physical Review Letters, 103(16). doi:10.1103/physrevlett.103.163601 | es_ES |
dc.description.references | Mérolla, J.-M., Mazurenko, Y., Goedgebuer, J.-P., Duraffourg, L., Porte, H., & Rhodes, W. T. (1999). Quantum cryptographic device using single-photon phase modulation. Physical Review A, 60(3), 1899-1905. doi:10.1103/physreva.60.1899 | es_ES |
dc.description.references | Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N. J., & Grangier, P. (2003). Quantum key distribution using gaussian-modulated coherent states. Nature, 421(6920), 238-241. doi:10.1038/nature01289 | es_ES |
dc.description.references | Tsang, M., & Psaltis, D. (2006). Propagation of temporal entanglement. Physical Review A, 73(1). doi:10.1103/physreva.73.013822 | es_ES |
dc.description.references | Tsang, M., Shapiro, J. H., & Lloyd, S. (2008). Quantum theory of optical temporal phase and instantaneous frequency. Physical Review A, 78(5). doi:10.1103/physreva.78.053820 | es_ES |
dc.description.references | Tsang, M., Shapiro, J. H., & Lloyd, S. (2009). Quantum theory of optical temporal phase and instantaneous frequency. II. Continuous-time limit and state-variable approach to phase-locked loop design. Physical Review A, 79(5). doi:10.1103/physreva.79.053843 | es_ES |
dc.description.references | Bloch, M., McLaughlin, S. W., Merolla, J.-M., & Patois, F. (2007). Frequency-coded quantum key distribution. Optics Letters, 32(3), 301. doi:10.1364/ol.32.000301 | es_ES |
dc.description.references | Kumar, P., & Prabhakar, A. (2009). Evolution of Quantum States in an Electro-Optic Phase Modulator. IEEE Journal of Quantum Electronics, 45(2), 149-156. doi:10.1109/jqe.2008.2002673 | es_ES |
dc.description.references | Olislager, L., Cussey, J., Nguyen, A. T., Emplit, P., Massar, S., Merolla, J.-M., & Huy, K. P. (2010). Frequency-bin entangled photons. Physical Review A, 82(1). doi:10.1103/physreva.82.013804 | es_ES |
dc.description.references | Capmany, J., & Fernández-Pousa, C. R. (2010). Quantum model for electro-optical phase modulation. Journal of the Optical Society of America B, 27(6), A119. doi:10.1364/josab.27.00a119 | es_ES |
dc.description.references | Susskind, L., & Glogower, J. (1964). Quantum mechanical phase and time operator. Physics Physique Fizika, 1(1), 49-61. doi:10.1103/physicsphysiquefizika.1.49 | es_ES |
dc.description.references | CARRUTHERS, P., & NIETO, M. M. (1968). Phase and Angle Variables in Quantum Mechanics. Reviews of Modern Physics, 40(2), 411-440. doi:10.1103/revmodphys.40.411 | es_ES |
dc.description.references | Pegg, D. T., & Barnett, S. M. (1988). Unitary Phase Operator in Quantum Mechanics. Europhysics Letters (EPL), 6(6), 483-487. doi:10.1209/0295-5075/6/6/002 | es_ES |
dc.description.references | Lynch, R. (1995). The quantum phase problem: a critical review. Physics Reports, 256(6), 367-436. doi:10.1016/0370-1573(94)00095-k | es_ES |
dc.description.references | Barnett, S. M., & Vaccaro, J. A. (Eds.). (2007). The Quantum Phase Operator. doi:10.1201/b16006 | es_ES |
dc.description.references | Blow, K. J., Loudon, R., Phoenix, S. J. D., & Shepherd, T. J. (1990). Continuum fields in quantum optics. Physical Review A, 42(7), 4102-4114. doi:10.1103/physreva.42.4102 | es_ES |
dc.description.references | D’Ariano, G. M., & Paris, M. G. A. (1993). Necessity of sine-cosine joint measurement. Physical Review A, 48(6), R4039-R4042. doi:10.1103/physreva.48.r4039 | es_ES |