Mostrar el registro sencillo del ítem
dc.contributor.author | Bonet Solves, José Antonio | es_ES |
dc.contributor.author | Vukotic, Dragan | es_ES |
dc.date.accessioned | 2020-09-10T03:31:35Z | |
dc.date.available | 2020-09-10T03:31:35Z | |
dc.date.issued | 2017-09 | es_ES |
dc.identifier.issn | 1422-6383 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/149715 | |
dc.description.abstract | [EN] Given a non-negative weight v, not necessarily bounded or strictly positive, defined on a domain G in the complex plane, we consider the weighted space H-v(infinity) (G)of all holomorphic functions on G such that the product v vertical bar f vertical bar is bounded in G and study the question of when such a space is complete under the canonical sup-seminorm. We obtain both some necessary and some sufficient conditions in terms of the weight v, exhibit several relevant examples, and characterize completeness in the case of spaces with radial weights on balanced domains. | es_ES |
dc.description.sponsorship | The first author was partially supported by MTM2013-43540-P and MTM2016-76647-P by MINECO/FEDER-EU and GVA Prometeo II/2013/013. The second author was partially supported by the MINECO/FEDER-EU Grant MTM2015-65792-P. Both authors were partially supported by Thematic Research Network MTM2015-69323-REDT, MINECO, Spain. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Results in Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Weighted Banach spaces | es_ES |
dc.subject | Holomorphic functions | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A note on completeness of weighted normed spaces of analytic functions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00025-017-0696-2 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2013-43540-P/ES/METODOS DEL ANALISIS FUNCIONAL Y TEORIA DE OPERADORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2015-65792-P/ES/DESIGUALDADES Y OPERADORES EN ANALISIS REAL Y COMPLEJO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2015-69323-REDT/ES/VARIABLE COMPLEJA, ESPACIOS DE FUNCIONES Y OPERADORES ENTRE ELLOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F013/ES/Análisis funcional, teoría de operadores y sus aplicaciones (AFUNTOP)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Bonet Solves, JA.; Vukotic, D. (2017). A note on completeness of weighted normed spaces of analytic functions. Results in Mathematics. 72(1-2):263-279. https://doi.org/10.1007/s00025-017-0696-2 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00025-017-0696-2 | es_ES |
dc.description.upvformatpinicio | 263 | es_ES |
dc.description.upvformatpfin | 279 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 72 | es_ES |
dc.description.issue | 1-2 | es_ES |
dc.relation.pasarela | S\351144 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Arcozzi, N., Björn, A.: Dominating sets for analytic and harmonic functions and completeness of weighted Bergman spaces. Math. Proc. R. Ir. Acad. 102A, 175–192 (2002) | es_ES |
dc.description.references | Berenstein, C.A., Gay, R.: Complex Variables, An Introduction. Springer, New York (1991) | es_ES |
dc.description.references | Bierstedt, K.D., Bonet, J., Galbis, A.: Weighted spaces of holomorphic functions on bounded domains. Mich. Math. J. 40, 271–297 (1993) | es_ES |
dc.description.references | Bierstedt, K.D., Bonet, J., Taskinen, J.: Associated weights and spaces of holomorphic functions. Stud. Math. 127, 137–168 (1998) | es_ES |
dc.description.references | Björn, A.: Removable singularities for weighted Bergman spaces. Czechoslov. Math. J. 56, 179–227 (2006) | es_ES |
dc.description.references | Bonet, J., Domański, P., Lindström, M.: Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions. Can. Math. Bull. 42(2), 139–148 (1999) | es_ES |
dc.description.references | Bonet, J., Vogt, D.: Weighted spaces of holomorphic functions and sequence spaces. Note Mat. 17, 87–97 (1997) | es_ES |
dc.description.references | Conway, J.B.: Functions of One Complex Variable, Second Edition, Graduate Texts in Mathematics, vol. 11. Springer, New York (1978) | es_ES |
dc.description.references | Gaier, D.: Lectures on Complex Approximation. Birkhäuser, Boston (1987) | es_ES |
dc.description.references | Grosse-Erdmann, K.-G.: A weak criterion for vector-valued holomorphic functions. Math. Proc. Camb. Philos. Soc. 136, 399–411 (2004) | es_ES |
dc.description.references | Hörmander, L.: An Introduction to Complex Analysis in Several Variables. North-Holland, Amsterdam (1979) | es_ES |
dc.description.references | Horváth, J.: Topological Vector Spaces and Distributions. Addison-Wesley, Reading (1966) | es_ES |
dc.description.references | Lusky, W.: On weighted spaces of harmonic and holomorphic functions. J. Lond. Math. Soc. 51, 309–320 (1995) | es_ES |
dc.description.references | Lusky, W.: On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Stud. Math. 175, 19–45 (2006) | es_ES |
dc.description.references | Nakazi, T.: Weighted Bloch spaces which are Banach spaces. Rend. Circ. Mat. Palermo 62, 427–440 (2013) | es_ES |
dc.description.references | Shields, A.L., Williams, D.L.: Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 162, 287–302 (1971) | es_ES |