- -

Factorization of operators through subspaces of L-1-spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Factorization of operators through subspaces of L-1-spaces

Show simple item record

Files in this item

dc.contributor.author Calabuig, J. M. es_ES
dc.contributor.author Rodríguez, José es_ES
dc.contributor.author Sánchez Pérez, Enrique Alfonso es_ES
dc.date.accessioned 2020-09-10T03:31:54Z
dc.date.available 2020-09-10T03:31:54Z
dc.date.issued 2017-12 es_ES
dc.identifier.issn 1446-7887 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149722
dc.description.abstract [EN] We analyze domination properties and factorization of operators in Banach spaces through subspaces of L1-spaces. Using vector measure integration and extending classical arguments based on scalar integral bounds, we provide characterizations of operators factoring through subspaces of L1-spaces of finite measures. Some special cases involving positivity and compactness of the operators are considered. es_ES
dc.description.sponsorship Research supported by MINECO/FEDER under projects MTM2014-53009-P (J.M Calabuig), MTM2014-54182-P (J. Rodriguez) and MTM2012-36740-C02-02 (E. A. Sanchez-Perez). es_ES
dc.language Inglés es_ES
dc.publisher Cambridge University Press es_ES
dc.relation.ispartof Journal of the Australian Mathematical Society es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Banach function space es_ES
dc.subject Positive operator es_ES
dc.subject Compact operator es_ES
dc.subject Factorization es_ES
dc.subject L-1-space es_ES
dc.subject Vector measure es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Factorization of operators through subspaces of L-1-spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1017/S1446788716000513 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-53009-P/ES/ANALISIS VECTORIAL, MULTILINEAL Y APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-77054-C2-1-P/ES/ANALISIS NO LINEAL, INTEGRACION VECTORIAL Y APLICACIONES EN CIENCIAS DE LA INFORMACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2012-36740-C02-02/ES/Operadores multilineales, espacios de funciones integrables y aplicaciones/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-54182-P/ES/TOPOLOGIA, ANALISIS Y CONJUNTOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Calabuig, JM.; Rodríguez, J.; Sánchez Pérez, EA. (2017). Factorization of operators through subspaces of L-1-spaces. Journal of the Australian Mathematical Society. 103(3):313-328. https://doi.org/10.1017/S1446788716000513 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1017/S1446788716000513 es_ES
dc.description.upvformatpinicio 313 es_ES
dc.description.upvformatpfin 328 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 103 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\353454 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Lindenstrauss, J., & Tzafriri, L. (1979). Classical Banach Spaces II. doi:10.1007/978-3-662-35347-9 es_ES
dc.description.references Pisier, G. (1986). Factorization of Linear Operators and Geometry of Banach Spaces. CBMS Regional Conference Series in Mathematics. doi:10.1090/cbms/060 es_ES
dc.description.references Okada, S., Ricker, W. J., & Sánchez Pérez, E. A. (2008). Optimal Domain and Integral Extension of Operators. doi:10.1007/978-3-7643-8648-1 es_ES
dc.description.references Lacey, H. E. (1974). The Isometric Theory of Classical Banach Spaces. doi:10.1007/978-3-642-65762-7 es_ES
dc.description.references Fernández, A., Mayoral, F., Naranjo, F., Sáez, C., & Sánchez-Pérez, E. A. (2005). Vector measure Maurey–Rosenthal-type factorizations and <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mo>ℓ</mml:mo></mml:math>-sums of <mml:math altimg=«si2.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math>-spaces. Journal of Functional Analysis, 220(2), 460-485. doi:10.1016/j.jfa.2004.06.010 es_ES
dc.description.references Juan, M. A., & Sánchez Pérez, E. A. (2013). Maurey-Rosenthal domination for abstract Banach lattices. Journal of Inequalities and Applications, 2013(1). doi:10.1186/1029-242x-2013-213 es_ES
dc.description.references Avilés, A., Cabello Sánchez, F., Castillo, J. M. F., González, M., & Moreno, Y. (2013). On separably injective Banach spaces. Advances in Mathematics, 234, 192-216. doi:10.1016/j.aim.2012.10.013 es_ES
dc.description.references Defant, A., & Sánchez Pérez, E. A. (2004). Maurey–Rosenthal factorization of positive operators and convexity. Journal of Mathematical Analysis and Applications, 297(2), 771-790. doi:10.1016/j.jmaa.2004.04.047 es_ES
dc.description.references DEFANT, A., & PÉREZ, E. A. S. (2009). Domination of operators on function spaces. Mathematical Proceedings of the Cambridge Philosophical Society, 146(1), 57-66. doi:10.1017/s0305004108001734 es_ES
dc.description.references Bartle, R. G., Dunford, N., & Schwartz, J. (1955). Weak Compactness and Vector Measures. Canadian Journal of Mathematics, 7, 289-305. doi:10.4153/cjm-1955-032-1 es_ES
dc.description.references Rosenthal, H. P. (1974). A Characterization of Banach Spaces Containing l1. Proceedings of the National Academy of Sciences, 71(6), 2411-2413. doi:10.1073/pnas.71.6.2411 es_ES
dc.description.references Diestel, J., Jarchow, H., & Tonge, A. (1995). Absolutely Summing Operators. doi:10.1017/cbo9780511526138 es_ES
dc.description.references Rueda, P., & Sánchez-Pérez, E. A. (2015). Compactness in spaces of p-integrable functions with respect to a vector measure. Topological Methods in Nonlinear Analysis, 45(2), 641. doi:10.12775/tmna.2015.030 es_ES
dc.description.references Rosenthal, H. P. (1973). On Subspaces of L p. The Annals of Mathematics, 97(2), 344. doi:10.2307/1970850 es_ES
dc.description.references Diestel, J., & Uhl, J. (1977). Vector Measures. Mathematical Surveys and Monographs. doi:10.1090/surv/015 es_ES
dc.description.references [16] M. Mastyło and E. A. Sánchez-Pérez , ‘Factorization of operators through Orlicz spaces’, Bull. Malays. Math. Sci. Soc. doi:10.1007/s40840-015-0158-5, to appear. es_ES
dc.description.references Calabuig, J. M., Lajara, S., Rodríguez, J., & Sánchez-Pérez, E. A. (2014). Compactness in L1of a vector measure. Studia Mathematica, 225(3), 259-282. doi:10.4064/sm225-3-6 es_ES
dc.description.references Defant, A. (2001). Positivity, 5(2), 153-175. doi:10.1023/a:1011466509838 es_ES
dc.description.references Fabian, M., Habala, P., Hájek, P., Montesinos, V., & Zizler, V. (2011). Banach Space Theory. CMS Books in Mathematics. doi:10.1007/978-1-4419-7515-7 es_ES


This item appears in the following Collection(s)

Show simple item record