- -

A Note on the Spectrum of Composition Operators on Spaces of Real Analytic Functions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A Note on the Spectrum of Composition Operators on Spaces of Real Analytic Functions

Show simple item record

Files in this item

dc.contributor.author Bonet Solves, José Antonio es_ES
dc.contributor.author DOMANSKI, PAWEL es_ES
dc.date.accessioned 2020-09-10T03:32:03Z
dc.date.available 2020-09-10T03:32:03Z
dc.date.issued 2017-01 es_ES
dc.identifier.issn 1661-8254 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149725
dc.description.abstract [EN] In this paper the spectrum of composition operators on the space of real analytic functions is investigated. In some cases it is completely determined while in some other cases it is only estimated. es_ES
dc.description.sponsorship The research of the authors was partially supported by MEC and FEDER Project MTM2013-43540-P and the work of of Bonet by the Grant GV Project Prometeo II/2013/013. The research of Domanski was supported by National Center of Science, Poland, Grant No. DEC-2013/10/A/ST1/00091. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation NCN/DEC-2013/10/A/ST1/00091 es_ES
dc.relation GENERALITAT VALENCIANA/PROMETEOII/2013/013 es_ES
dc.relation info:eu-repo/grantAgreement/MINECO//MTM2013-43540-P/ES/METODOS DEL ANALISIS FUNCIONAL Y TEORIA DE OPERADORES/ es_ES
dc.relation.ispartof Complex Analysis and Operator Theory es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Spaces of real analytic functions es_ES
dc.subject Composition operator es_ES
dc.subject Spectrum es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A Note on the Spectrum of Composition Operators on Spaces of Real Analytic Functions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11785-016-0589-5 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bonet Solves, JA.; Domanski, P. (2017). A Note on the Spectrum of Composition Operators on Spaces of Real Analytic Functions. Complex Analysis and Operator Theory. 11(1):161-174. https://doi.org/10.1007/s11785-016-0589-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11785-016-0589-5 es_ES
dc.description.upvformatpinicio 161 es_ES
dc.description.upvformatpfin 174 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\327538 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder National Science Centre, Polonia es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.relation.references Belitskii, G., Lyubich, Y.: The Abel equation and total solvability of linear functional equations. Studia Math. 127, 81–97 (1998) es_ES
dc.relation.references Belitskii, G., Lyubich, Y.: The real analytic solutions of the Abel functional equation. Studia Math. 134, 135–141 (1999) es_ES
dc.relation.references Belitskii, G., Tkachenko, V.: One-Dimensional Functional Equations. Springer, Basel (2003) es_ES
dc.relation.references Belitskii, G., Tkachenko, V.: Functional equations in real analytic functions. Studia Math. 143, 153–174 (2000) es_ES
dc.relation.references Bonet, J., Domański, P.: Power bounded composition operators on spaces of analytic functions. Collect. Math. 62, 69–83 (2011) es_ES
dc.relation.references Bonet, J., Domański, P.: Hypercyclic composition operators on spaces of real analytic fucntions. Math. Proc. Cambridge Phil. Soc. 153, 489–503 (2012) es_ES
dc.relation.references Bonet, J., Domański, P.: Abel’s functional equation and eigenvalues of composition operators on spaces of real analytic functions. Integr. Equ. Oper. Theor. 81, 455–482 (2015). doi: 10.1007/s00020-014-2175-4 es_ES
dc.relation.references Cartan, H.: Variétés analytiques réelles et variétés analytiques complexes. Bull. Soc. Math. France 85, 77–99 (1957) es_ES
dc.relation.references Domański, P.: Notes on real analytic functions and classical operators, Topics in Complex Analysis and Operator Theory (Winter School in Complex Analysis and Operator Theory, Valencia, February 2010), Contemporary Math. 561 (2012) 3–47. Amer. Math. Soc, Providence (2012) es_ES
dc.relation.references Domański, P., Goliński, M., Langenbruch, M.: A note on composition operators on spaces of real analytic functions. Ann. Polon. Mat. 103, 209–216 (2012) es_ES
dc.relation.references Domański, P., Langenbruch, M.: Composition operators on spaces of real analytic functions. Math. Nachr. 254–255, 68–86 (2003) es_ES
dc.relation.references Domański, P., Langenbruch, M.: Coherent analytic sets and composition of real analytic functions. J. reine angew. Math. 582, 41–59 (2005) es_ES
dc.relation.references Domański, P., Langenbruch, M.: Composition operators with closed image on spaces of real analytic functions. Bull. Lond. Math. Soc. 38, 636–646 (2006) es_ES
dc.relation.references Domański, P., Vogt, D.: The space of real analytic functions has no basis. Studia Math. 142, 187–200 (2000) es_ES
dc.relation.references Hörmander, L.: An Introduction to Complex Analysis in Several Variables. North Holland, Amsterdam (1986) es_ES
dc.relation.references Meise, R., Vogt, D.: Introduction to Functional Analysis. Clarendon, Oxford (1997) es_ES
dc.relation.references Smajdor, W.: On the existence and uniqueness of analytic solutions of the functional equation $$\varphi (z)=h(z,\varphi [f(z)])$$ φ ( z ) = h ( z , φ [ f ( z ) ] ) . Ann. Polon. Math. 19, 37–45 (1967) es_ES


This item appears in the following Collection(s)

Show simple item record