Mostrar el registro sencillo del ítem
dc.contributor.author | Sánchez-Cordero, E. | es_ES |
dc.contributor.author | Gómez, M. | es_ES |
dc.contributor.author | Bladé, E. | es_ES |
dc.date.accessioned | 2020-09-11T10:05:01Z | |
dc.date.available | 2020-09-11T10:05:01Z | |
dc.date.issued | 2020-07-31 | |
dc.identifier.issn | 1134-2196 | |
dc.identifier.uri | http://hdl.handle.net/10251/149840 | |
dc.description.abstract | [ES] El presente trabajo muestra un análisis numérico 3D del comportamiento del flujo de agua en un canal curvo influenciado por la presencia de un vertedero y una compuerta. La simulación numérica se realizó utilizando el software de Dinámica de Fluidos Computacional (CFD) basado en el método de volúmenes finitos (FVM) – OpenFOAM. En el modelo numérico la turbulencia se trata con la metodología RANS (k–ε, k–ω, y RNG k–ε) y se usa el método VOF (Volume of Fluid) para la captura de la superficie libre del agua. Los resultados numéricos obtenidos se evalúan al compararlos con los valores experimentales de calado en diferentes puntos dentro del dominio. Los valores de calado se midieron haciendo uso de sensores de nivel de agua y limnímetros. De esta manera, los resultados numéricos tridimensionales obtenidos son utilizados para analizar las líneas de corriente, las componentes de velocidades y los flujos secundarios. | es_ES |
dc.description.abstract | [EN] In this paper, three-dimensional numerical analysis of flow field patterns in an open channel bend influenced by a weir and a sluice gate is presented. The simulation was performed using the open source computational fluid dynamics (CFD) solver based on finite volume method (FVM) – OpenFOAM. Turbulence is treated using Reynolds-Averaged Navier Stokes equations (RANS) approach (i.e., k–ε, k–ω, y k–ε(RNG)), and the volume of fluid (VOF) method is used to simulate the air-water interface. The numerical results are assessed against experimental data (water depth) at different points within the domain. Water depths were measured by means of water level sensors and limnimeters. Therefore, the three-dimensional numerical results obtained are used to analyze streamlines, components of velocities, and secondary flows. | es_ES |
dc.description.sponsorship | Este trabajo fue posible gracias al financiamiento de la Secretaria de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT) del gobierno de la República del Ecuador a través de la beca doctoral del primer autor. Asimismo, los autores desean expresar su gratitud al Instituto de Investigación FLUMEN por facilitar sus instalaciones de laboratorio. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Ingeniería del agua | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Three-dimensional | es_ES |
dc.subject | Open-channel bend | es_ES |
dc.subject | RANS | es_ES |
dc.subject | VOF | es_ES |
dc.subject | OpenFOAM | es_ES |
dc.subject | Análisis tridimensional | es_ES |
dc.subject | Canal curvo | es_ES |
dc.subject | OpenFOAM. | es_ES |
dc.title | Análisis numérico 3D de las características del flujo en un canal curvo | es_ES |
dc.title.alternative | 3D numerical analysis of flow characteristics in an open – channel bend | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/ia.2020.12276 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Sánchez-Cordero, E.; Gómez, M.; Bladé, E. (2020). Análisis numérico 3D de las características del flujo en un canal curvo. Ingeniería del agua. 24(3):157-168. https://doi.org/10.4995/ia.2020.12276 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ia.2020.12276 | es_ES |
dc.description.upvformatpinicio | 157 | es_ES |
dc.description.upvformatpfin | 168 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 1886-4996 | |
dc.relation.pasarela | OJS\12276 | es_ES |
dc.contributor.funder | Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, Ecuador | es_ES |
dc.description.references | Celik, I., Ghia, U., Roache, P., Freitas, C. 2008. Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. Journal of Fluids Engineering, 130(7), 1-4. https://doi.org/10.1115/1.2960953 | es_ES |
dc.description.references | Gholami, A., Akbar Akhtari, A., Minatour, Y., Bonakdari, H., Javadi, A.A. 2014. Experimental and Numerical Study on Velocity Fields and Water Surface Profile in a Strongly-Curved 90° Open Channel Bend. Engineering Applications of Computational Fluid Mechanics, 8(3), 447-461. https://doi.org/10.1080/19942060.2014.11015528 | es_ES |
dc.description.references | Gómez M., Martínez-Gomariz E. 2016. 1D, 2D, and 3D Modeling of a PAC-UPC Laboratory Canal Bend. In: Gourbesville P., Cunge J., Caignaert G. (eds) Advances in Hydroinformatics. Springer Water. Springer, Singapore. https://doi.org/10.1007/978-981-287-615-7_29 | es_ES |
dc.description.references | Ippen, A.T., Drinker, P.A. 1962. Boundary Shear Stresses in Curved Trapezoidal Channels. Journal of the Hydraulics Division, 88(5), 143-180. | es_ES |
dc.description.references | Kalkwijk, J.P.T., de Vriend, H.J. 1980. Computational of the flow in shallow river bends. Journal of Hydraulic Research, 18(4), 327-342. https://doi.org/10.1080/00221688009499539 | es_ES |
dc.description.references | Launder, B.E., Spalding, D.B. 1974. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269-289. https://doi.org/10.1016/0045-7825(74)90029-2 | es_ES |
dc.description.references | MacCormack, R.W., Paullay, A.J. 1972. Computational Efficiency Achieved by Time Splitting of Finite Difference Operators. American Institute of Aeronautics and Astronautics, AIAA paper 72-154. https://doi.org/10.2514/6.1972-154 | es_ES |
dc.description.references | MacDonald, P.W. 1971. The Computation of Transonic Flow Through Two- Dimensional Gas Turbine Cascades. American Society of Mechanical Engineers, (Paper 71-GT-89). https://doi.org/10.1115/71-GT-89 | es_ES |
dc.description.references | Naji Abhari, M., Ghodsian, M., Vaghefi, M., Panahpur, N. 2010. Experimental and numerical simulation of flow in a 90° bend. Flow Measurement and Instrumentation, 21(3), 292-298. https://doi.org/10.1016/j.flowmeasinst.2010.03.002 | es_ES |
dc.description.references | Ramamurthy, A.S., Han, S.S., Biron, P.M. 2013. Three-Dimensional Simulation Parameters for 90° Open Channel Bend Flows. Journal of Computing in Civil Engineering, 27(3), 282-291. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000209 | es_ES |
dc.description.references | Rozovskiĭ, I. 1957. Flow of water in bends of open channels. Academy of Sciences of the Ukrainian SSR, Kiev, USSR (translated by the Israel Program for Scientific Translations, Jerusalem, 1961), Academy of Sciences of the Ukrainian SSR; Israel Program for Scientific Translations]; Kiev;[Washington D.C. available from the Office of Technical Services U.S. Dept. of Commerce]. | es_ES |
dc.description.references | Wilcox, D.C. 1994. Turbulence Modeling for CFD. (C.D. La Canada and Industries, eds.), DCW Industries, La Canada, California (USA). | es_ES |
dc.description.references | Yakhot, V., Orszag, S.A. 1986. Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, Kluwer Academic/Plenum Publishers, 1(1), 3-51. https://doi.org/10.1007/BF01061452 | es_ES |