- -

Predictive performance of genomic selection methods for carcass traits in Hanwoo beef cattle: impacts of the genetic architecture

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Predictive performance of genomic selection methods for carcass traits in Hanwoo beef cattle: impacts of the genetic architecture

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mehrban, H. es_ES
dc.contributor.author Lee, D.H. es_ES
dc.contributor.author Moradi, M.H. es_ES
dc.contributor.author IlCho, C. es_ES
dc.contributor.author Naserkheil, M. es_ES
dc.contributor.author Ibañez Escriche, Noelia es_ES
dc.date.accessioned 2020-09-12T03:33:57Z
dc.date.available 2020-09-12T03:33:57Z
dc.date.issued 2017-01-04 es_ES
dc.identifier.issn 0999-193X es_ES
dc.identifier.uri http://hdl.handle.net/10251/149917
dc.description.abstract [EN] Background: Hanwoo beef is known for its marbled fat, tenderness, juiciness and characteristic flavor, as well as for its low cholesterol and high omega 3 fatty acid contents. As yet, there has been no comprehensive investigation to estimate genomic selection accuracy for carcass traits in Hanwoo cattle using dense markers. This study aimed at evaluating the accuracy of alternative statistical methods that differed in assumptions about the underlying genetic model for various carcass traits: backfat thickness (BT), carcass weight (CW), eye muscle area (EMA), and marbling score (MS). Methods: Accuracies of direct genomic breeding values (DGV) for carcass traits were estimated by applying fivefold cross-validation to a dataset including 1183 animals and approximately 34,000 single nucleotide polymorphisms (SNPs). Results: Accuracies of BayesC, Bayesian LASSO (BayesL) and genomic best linear unbiased prediction (GBLUP) methods were similar for BT, EMA and MS. However, for CW, DGV accuracy was 7% higher with BayesC than with BayesL and GBLUP. The increased accuracy of BayesC, compared to GBLUP and BayesL, was maintained for CW, regardless of the training sample size, but not for BT, EMA, and MS. Genome-wide association studies detected consistent large effects for SNPs on chromosomes 6 and 14 for CW. Conclusions: The predictive performance of the models depended on the trait analyzed. For CW, the results showed a clear superiority of BayesC compared to GBLUP and BayesL. These findings indicate the importance of using a proper variable selection method for genomic selection of traits and also suggest that the genetic architecture that underlies CW differs from that of the other carcass traits analyzed. Thus, our study provides significant new insights into the carcass traits of Hanwoo cattle. es_ES
dc.description.sponsorship This work was supported by a Grant from the IPET Program (No. 20093068), Ministry of Agriculture, Food and Rural Affairs, Republic of Korea. We are also grateful to all the staff of the Korean Hanwoo Improvement Center of the National Agricultural Cooperative Federation (NACF) for supplying data as well as semen and blood samples of Hanwoo cattle. es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof Genetics Selection Evolution es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Effective population-size es_ES
dc.subject Estimated breeding values es_ES
dc.subject Residual feed-intake es_ES
dc.subject Meat quality traits es_ES
dc.subject Wide association es_ES
dc.subject Linkage disequilibrium es_ES
dc.subject Complex traits es_ES
dc.subject Sequence data es_ES
dc.subject Bos-Indicus es_ES
dc.subject Accuracy es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Predictive performance of genomic selection methods for carcass traits in Hanwoo beef cattle: impacts of the genetic architecture es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12711-016-0283-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MAFRA//20093068/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Mehrban, H.; Lee, D.; Moradi, M.; Ilcho, C.; Naserkheil, M.; Ibañez Escriche, N. (2017). Predictive performance of genomic selection methods for carcass traits in Hanwoo beef cattle: impacts of the genetic architecture. Genetics Selection Evolution. 49:1-13. https://doi.org/10.1186/s12711-016-0283-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s12711-016-0283-0 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 49 es_ES
dc.identifier.pmid 28093066 es_ES
dc.identifier.pmcid PMC5240470 es_ES
dc.relation.pasarela S\343525 es_ES
dc.contributor.funder Ministry of Agriculture, Food and Rural Affairs, Corea del Sur es_ES
dc.description.references Choi JW, Choi BH, Lee SH, Lee SS, Kim HC, Yu D, et al. Whole-genome resequencing analysis of Hanwoo and Yanbian cattle to identify genome-wide SNPs and signatures of selection. Mol Cells. 2015;38:466–73. es_ES
dc.description.references Lee SH, Choi BH, Cho SH, Lim D, Choi TJ, Park BH, et al. Genome-wide association study identifies three loci for intramuscular fat in Hanwoo (Korean cattle). Livest Sci. 2014;165:27–32. es_ES
dc.description.references Choi Y, Davis ME, Chung H. Effects of genetic variants in the promoter region of the bovine adiponectin (ADIPOQ) gene on marbling of Hanwoo beef cattle. Meat Sci. 2015;105:57–62. es_ES
dc.description.references Jo C, Cho SH, Chang J, Nam KC. Keys to production and processing of Hanwoo beef: a perspective of tradition and science. Anim Front. 2012;2:32–8. es_ES
dc.description.references Korea Rural Economic Institute (KREI). Outlook and Agricultural Statistics Information System(OASIS). http://oasis.krei.re.kr (2015). Accessed 20 Oct 2015. es_ES
dc.description.references Lee SH, Park BH, Sharma A, Dang CG, Lee SS, Choi TJ, et al. Hanwoo cattle: origin, domestication, breeding strategies and genomic selection. J Anim Sci Technol. 2014;56:2. es_ES
dc.description.references Lee SH, Choi BH, Lim D, Gondro C, Cho YM, Dang CG, et al. Genome-wide association study identifies major loci for carcass weight on BTA14 in Hanwoo (Korean cattle). PLoS One. 2013;8:e74677. es_ES
dc.description.references Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157:1819–29. es_ES
dc.description.references Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME. Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci. 2009;92:433–43. es_ES
dc.description.references VanRaden PM, Sullivan PG. International genomic evaluation methods for dairy cattle. Genet Sel Evol. 2010;42:7. es_ES
dc.description.references Colombani C, Legarra A, Fritz S, Guillaume F, Croiseau P, Ducrocq V, et al. Application of Bayesian least absolute shrinkage and selection operator (LASSO) and BayesCpi methods for genomic selection in French Holstein and Montbeliarde breeds. J Dairy Sci. 2013;96:575–91. es_ES
dc.description.references Duchemin SI, Colombani C, Legarra A, Baloche G, Larroque H, Astruc JM, et al. Genomic selection in the French Lacaune dairy sheep breed. J Dairy Sci. 2012;95:2723–33. es_ES
dc.description.references Liu T, Qu H, Luo C, Shu D, Wang J, Lund MS, et al. Accuracy of genomic prediction for growth and carcass traits in Chinese triple-yellow chickens. BMC Genet. 2014;15:110. es_ES
dc.description.references Boerner V, Johnston DJ, Tier B. Accuracies of genomically estimated breeding values from pure-breed and across-breed predictions in Australian beef cattle. Genet Sel Evol. 2014;46:61. es_ES
dc.description.references Bolormaa S, Pryce JE, Kemper K, Savin K, Hayes BJ, Barendse W, et al. Accuracy of prediction of genomic breeding values for residual feed intake and carcass and meat quality traits in Bos taurus, Bos indicus, and composite beef cattle. J Anim Sci. 2013;91:3088–104. es_ES
dc.description.references Rolf MM, Garrick DJ, Fountain T, Ramey HR, Weaber RL, Decker JE, et al. Comparison of Bayesian models to estimate direct genomic values in multi-breed commercial beef cattle. Genet Sel Evol. 2015;47:23. es_ES
dc.description.references Gianola D, de los Campos G, Hill WG, Manfredi E, Fernando R. Additive genetic variability and the Bayesian alphabet. Genetics. 2009;183:347–63. es_ES
dc.description.references Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the bayesian alphabet for genomic selection. BMC Bioinformatics. 2011;12:186. es_ES
dc.description.references Fernando RL, Garrick D. Bayesian methods applied to GWAS. Methods Mol Biol. 2013;1019:237–74. es_ES
dc.description.references van den Berg I, Fritz S, Boichard D. QTL fine mapping with Bayes C(pi): a simulation study. Genet Sel Evol. 2013;45:19. es_ES
dc.description.references de los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E, et al. Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics. 2009;182:375–85. es_ES
dc.description.references Legarra A, Robert-Granie C, Croiseau P, Guillaume F, Fritz S. Improved Lasso for genomic selection. Genet Res. 2011;93:77–87. es_ES
dc.description.references Su G, Guldbrandtsen B, Gregersen VR, Lund MS. Preliminary investigation on reliability of genomic estimated breeding values in the Danish Holstein population. J Dairy Sci. 2010;93:1175–83. es_ES
dc.description.references Lund MS, Roos AP, Vries AG, Druet T, Ducrocq V, Fritz S, et al. A common reference population from four European Holstein populations increases reliability of genomic predictions. Genet Sel Evol. 2011;43:43. es_ES
dc.description.references Saatchi M, McClure MC, McKay SD, Rolf MM, Kim J, Decker JE, et al. Accuracies of genomic breeding values in American Angus beef cattle using K-means clustering for cross-validation. Genet Sel Evol. 2011;43:40. es_ES
dc.description.references Neves HH, Carvalheiro R, O’Brien AM, Utsunomiya YT, do Carmo AS, Schenkel FS, et al. Accuracy of genomic predictions in Bos indicus (Nellore) cattle. Genet Sel Evol. 2014;46:17. es_ES
dc.description.references Chen L, Vinsky M, Li C. Accuracy of predicting genomic breeding values for carcass merit traits in Angus and Charolais beef cattle. Anim Genet. 2015;46:55–9. es_ES
dc.description.references Tribout T, Larzul C, Phocas F. Efficiency of genomic selection in a purebred pig male line. J Anim Sci. 2012;90:4164–76. es_ES
dc.description.references Daetwyler HD, Swan AA, van der Werf JH, Hayes BJ. Accuracy of pedigree and genomic predictions of carcass and novel meat quality traits in multi-breed sheep data assessed by cross-validation. Genet Sel Evol. 2012;44:33. es_ES
dc.description.references Wolc A, Stricker C, Arango J, Settar P, Fulton JE, O’Sullivan NP, et al. Breeding value prediction for production traits in layer chickens using pedigree or genomic relationships in a reduced animal model. Genet Sel Evol. 2011;43:5. es_ES
dc.description.references Hayes BJ, Pryce J, Chamberlain AJ, Bowman PJ, Goddard ME. Genetic architecture of complex traits and accuracy of genomic prediction: coat colour, milk-fat percentage, and type in Holstein cattle as contrasting model traits. PLoS Genet. 2010;6:e1001139. es_ES
dc.description.references Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA. The impact of genetic architecture on genome-wide evaluation methods. Genetics. 2010;185:1021–31. es_ES
dc.description.references Zhang Z, Liu J, Ding X, Bijma P, de Koning DJ, Zhang Q. Best linear unbiased prediction of genomic breeding values using a trait specific marker derived relationship matrix. PLoS One. 2010;5:e12648. es_ES
dc.description.references Clark SA, Hickey JM, van der Werf JH. Different models of genetic variation and their effect on genomic evaluation. Genet Sel Evol. 2011;43:18. es_ES
dc.description.references Moradi MH, Nejati-Javaremi A, Moradi-Shahrbabak M, Dodds KG, McEwan JC. Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genet. 2012;13:10. es_ES
dc.description.references Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing data inference for whole genome association studies by use of localized haplotype clustering. Am J Hum Genet. 2007;81:1084–97. es_ES
dc.description.references Misztal I, Tsuruta S, Strabel T, Auvray B, Druet T, Lee DH. BLUPF90 and related programs (BGF90). In: Proceedings of the 7th world congress on genetics applied to livestock production: 19–23 August 2002; Montpellier. CD-ROM Communication No 28-27. 2002. es_ES
dc.description.references Legarra A RA, Filangi O. GS3 genomic Selection–Gibbs Sampling–Gauss Seidel (and BayesCπ) (2011). https://qgsp.jouy.inra.fr/index.php?option=com_content&view=article&id=60&Itemid=67 . es_ES
dc.description.references VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008;91:4414–23. es_ES
dc.description.references Aguilar I, Misztal I, Tsuruta S, Legarra A, Wang H. PREGSF90–POSTGSF90: computational tools for the implementation of single-step genomic selection and genome-wide association with ungenotyped individuals in BLUPF90 programs. In: Proceedings of the 10th world congress on genetics applied to livestock production: 18–22 August 2014; Vancouver. 2014. es_ES
dc.description.references Meyer K, Tier B. SNP Snappy: a strategy for fast genome-wide association studies fitting a full mixed model. Genetics. 2012;190:275–7. es_ES
dc.description.references Khansefid M, Pryce JE, Bolormaa S, Miller SP, Wang Z, Li C, et al. Estimation of genomic breeding values for residual feed intake in a multibreed cattle population. J Anim Sci. 2014;92:3270–83. es_ES
dc.description.references Legarra A, Robert Granié C, Manfredi E, Elsen JM. Performance of genomic selection in mice. Genetics. 2008;180:611–8. es_ES
dc.description.references Abdollahi-Arpanahi R, Morota G, Valente BD, Kranis A, Rosa GJ, Gianola D. Assessment of bagging GBLUP for whole-genome prediction of broiler chicken traits. J Anim Breed Genet. 2015;132:218–28. es_ES
dc.description.references de los Campos G, Sorensen D, Gianola D. Genomic heritability: what is it? PLoS Genet. 2015;11:e1005048. es_ES
dc.description.references Corbin LJ, Liu AY, Bishop SC, Woolliams JA. Estimation of historical effective population size using linkage disequilibria with marker data. J Anim Breed Genet. 2012;129:257–70. es_ES
dc.description.references Tenesa A, Navarro P, Hayes BJ, Duffy DL, Clarke GM, Goddard ME, et al. Recent human effective population size estimated from linkage disequilibrium. Genome Res. 2007;17:520–6. es_ES
dc.description.references Rabier CE, Barre P, Asp T, Charmet G, Mangin B. On the accuracy of genomic selection. PLoS One. 2016;11:e0156086. es_ES
dc.description.references Hayes BJ, Visscher PM, Goddard ME. Increased accuracy of artificial selection by using the realized relationship matrix. Genet Res. 2009;91:47–60. es_ES
dc.description.references Onogi A, Ogino A, Komatsu T, Shoji N, Simizu K, Kurogi K, et al. Genomic prediction in Japanese Black cattle: application of a single-step approach to beef cattle. J Anim Sci. 2014;92:1931–8. es_ES
dc.description.references Lee SH, Cho YM, Lim D, Kim HC, Choi BH, Park HS, et al. Linkage disequilibrium and effective population size in Hanwoo Korean cattle. Asian Aust J Anim Sci. 2011;24:1660–5. es_ES
dc.description.references Li Y, Kim JJ. Effective population size and signatures of selection using bovine 50 K SNP chips in Korean native cattle (Hanwoo). Evol Bioinform Online. 2015;11:143–53. es_ES
dc.description.references Marquez GC, Speidel SE, Enns RM, Garrick DJ. Genetic diversity and population structure of American Red Angus cattle. J Anim Sci. 2010;88:59–68. es_ES
dc.description.references Cleveland MA, Blackburn HD, Enns RM, Garrick DJ. Changes in inbreeding of US Herefords during the twentieth century. J Anim Sci. 2005;83:992–1001. es_ES
dc.description.references Sorensen AC, Sorensen MK, Berg P. Inbreeding in Danish dairy cattle breeds. J Dairy Sci. 2005;88:1865–72. es_ES
dc.description.references Kim ES, Kirkpatrick BW. Linkage disequilibrium in the North American Holstein population. Anim Genet. 2009;40:279–88. es_ES
dc.description.references de Roos AP, Hayes BJ, Spelman RJ, Goddard ME. Linkage disequilibrium and persistence of phase in Holstein–Friesian, Jersey and Angus cattle. Genetics. 2008;179:1503–12. es_ES
dc.description.references Ni GY, Zhang Z, Jiang L, Ma PP, Zhang Q, Ding XD. Chinese Holstein cattle effective population size estimated from whole genome linkage disequilibrium. Yi Chuan. 2012;34:50–8. es_ES
dc.description.references Goddard ME, Hayes BJ. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet. 2009;10:381–91. es_ES
dc.description.references González-Recio O, Rosa GJ, Gianola D. Machine learning methods and predictive ability metrics for genome-wide prediction of complex traits. Livest Sci. 2014;166:217–31. es_ES
dc.description.references Gao N, Li J, He J, Xiao G, Luo Y, Zhang H, et al. Improving accuracy of genomic prediction by genetic architecture based priors in a Bayesian model. BMC Genet. 2015;16:20. es_ES
dc.description.references Wolc A, Arango J, Settar P, Fulton JE, O’Sullivan NP, Dekkers JC, et al. Mixture models detect large effect QTL better than GBLUP and result in more accurate and persistent predictions. J Anim Sci Biotechnol. 2016;7:7. es_ES
dc.description.references Nishimura S, Watanabe T, Mizoshita K, Tatsuda K, Fujita T, Watanabe N, et al. Genome-wide association study identified three major QTL for carcass weight including the PLAG1-CHCHD7 QTN for stature in Japanese Black cattle. BMC Genet. 2012;13:40. es_ES
dc.description.references Ogawa S, Matsuda H, Taniguchi Y, Watanabe T, Nishimura S, Sugimoto Y, et al. Effects of single nucleotide polymorphism marker density on degree of genetic variance explained and genomic evaluation for carcass traits in Japanese Black beef cattle. BMC Genet. 2014;15:15. es_ES
dc.description.references Fernandez Júnior GA, Rosa GJ, Valente BD, Carvalheiro R, Baldi F, Garcia DA, et al. Genomic prediction of breeding values for carcass traits in Nellore cattle. Genet Sel Evol. 2016;48:7. es_ES
dc.description.references Saatchi M, Schnabel RD, Taylor JF, Garrick DJ. Large-effect pleiotropic or closely linked QTL segregate within and across ten US cattle breeds. BMC Genomics. 2014;15:442. es_ES
dc.description.references Kizilkaya K, Fernando RL, Garrick DJ. Reduction in accuracy of genomic prediction for ordered categorical data compared to continuous observations. Genet Sel Evol. 2014;46:37. es_ES
dc.description.references Jensen J, Su G, Madsen P. Partitioning additive genetic variance into genomic and remaining polygenic components for complex traits in dairy cattle. BMC Genet. 2012;13:44. es_ES
dc.description.references Khatkar MS, Moser G, Hayes BJ, Raadsma HW. Strategies and utility of imputed SNP genotypes for genomic analysis in dairy cattle. BMC Genomics. 2012;13:538. es_ES
dc.description.references Druet T, Macleod IM, Hayes BJ. Toward genomic prediction from whole-genome sequence data: impact of sequencing design on genotype imputation and accuracy of predictions. Heredity. 2014;112:39–47. es_ES
dc.description.references Heidaritabar M, Calus MP, Megens HJ, Vereijken A, Groenen MA, Bastiaansen JW. Accuracy of genomic prediction using imputed whole genome sequence data in white layers. J Anim Breed Genet. 2016;133:167–79. es_ES
dc.description.references Habier D, Fernando RL, Dekkers JC. The impact of genetic relationship information on genome-assisted breeding values. Genetics. 2007;177:2389–97. es_ES
dc.description.references Legarra A, Aguilar I, Misztal I. A relationship matrix including full pedigree and genomic information. J Dairy Sci. 2009;92:4656–63. es_ES
dc.description.references Misztal I, Aggrey SE, Muir WM. Experiences with a single-step genome evaluation. Poult Sci. 2013;92:2530–4. es_ES
dc.description.references Wang H, Misztal I, Aguilar I, Legarra A, Muir WM. Genome-wide association mapping including phenotypes from relatives without genotypes. Genet Res. 2012;94:73–83. es_ES
dc.description.references Tiezzi F, Maltecca C. Accounting for trait architecture in genomic predictions of US Holstein cattle using a weighted realized relationship matrix. Genet Sel Evol. 2015;47:24. es_ES
dc.description.references Neves HH, Carvalheiro R, Queiroz SA. A comparison of statistical methods for genomic selection in a mice population. BMC Genet. 2012;13:100. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem