- -

Riparian and microhabitat factors determine the structure of the EPT community in Andean headwater rivers of Ecuador

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Riparian and microhabitat factors determine the structure of the EPT community in Andean headwater rivers of Ecuador

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vimos-Lojano, Diego es_ES
dc.contributor.author Martinez-Capel, Francisco es_ES
dc.contributor.author Hampel, Henrietta es_ES
dc.date.accessioned 2020-09-12T03:34:08Z
dc.date.available 2020-09-12T03:34:08Z
dc.date.issued 2017-12 es_ES
dc.identifier.issn 1936-0584 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149923
dc.description "This is the peer reviewed version of the following article: Vimos-Lojano, D.J., F. Martínez-Capel, and H. Hampel. 2017. Riparian and Microhabitat Factors Determine the Structure of the EPT Community in Andean Headwater Rivers of Ecuador. Ecohydrology 10 (8). Wiley: e1894. doi:10.1002/eco.1894, which has been published in final form at https://doi.org/10.1002/eco.1894. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] This research was conducted in the high-Andean basin of the Zhurucay River in southern Ecuador. In 4 river reaches, 19 sampling campaigns were conducted per reach spread over a period of 35months. The biotic samples were selected in the periods with greatest flow stability. Parallel to each sampling, 37 environmental variables grouped into 3 factors (riparian corridor, hydromorphology, and water quality) were recorded. The study aimed to analyse during periods of stable flow the influence of these environmental factors on the structure and density of the EPT community (Ephemeroptera, Plecoptera, Trichoptera) in a quasi-pristine aquatic ecosystem. Multivariate statistical analysis revealed that the Froude number, gravel type, and width/depth ratio are the most relevant hydromorphological variables explaining variations in EPT density. Xiphocentronidae, Contulma, and Helicopsyche were observed to have a relationship with the order of the river, while Ochrotrichia, Nectopsyche, and Phylloicus varied with the type of riparian vegetation. Phylloicus, Ochrotrichia, and Nectopsyche were common in lentic sites, while the proportion of gravel and the width/depth ratio restricted the genus Helicopsyche. The only relevant water quality factor was the total phosphorus, which was related with 2 taxa. In conclusion, although macroinvertebrates are currently employed in water quality studies, riparian vegetation and hydromorphological factors are determinant for their communities in pristine Andean rivers. Such factors are therefore crucial in the study of environmental flows and the assessment of the ecological integrity. es_ES
dc.description.sponsorship This research was funded by the SENESCYTPIC 11-726 Project (Interpretation of hydro-ecological processes as a basis for assessing the ecological flow in the Paute and Jubones watershed), the hydroelectric company CELECEP, and DIUC (Investigation Department of the University of Cuenca). Thanks are due to the SENESCYT project PIC 11-715 (Impact of land use change in the hydrogeochemistry of Andean basins) for providing the hydrological data used in this study. Further, financial support was provided by SENESCYT through a fellowship granted to the first author for carrying out his doctoral programme and through the PROMETEO fellowship awarded to the third author. We are greateful to Ing. Andres Quichimbo for reviewing the hydrological data, and the staff of the Aquatic Ecology Laboratory at the University of Cuenca for their assistance and field logistics. Finally, the authors are grateful to Prof. Jan Feyen for constructive polishing edition the manuscript. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Ecohydrology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Andean streams es_ES
dc.subject EPT es_ES
dc.subject Headwaters es_ES
dc.subject Hydromorphology es_ES
dc.subject Macroinvertebrate es_ES
dc.subject Riparian corridor es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Riparian and microhabitat factors determine the structure of the EPT community in Andean headwater rivers of Ecuador es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/eco.1894 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SENESCYT//PIC-11-715/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SENESCYT//PIC-11-726/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Vimos-Lojano, D.; Martinez-Capel, F.; Hampel, H. (2017). Riparian and microhabitat factors determine the structure of the EPT community in Andean headwater rivers of Ecuador. Ecohydrology. 10(8):1-15. https://doi.org/10.1002/eco.1894 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/eco.1894 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 8 es_ES
dc.relation.pasarela S\348387 es_ES
dc.contributor.funder Universidad de Cuenca, Ecuador es_ES
dc.contributor.funder Corporación Eléctrica del Ecuador es_ES
dc.contributor.funder Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, Ecuador es_ES
dc.description.references Albariño, R. J., & Balseiro, E. G. (2002). Leaf litter breakdown in Patagonian streams: native versus exotic trees and the effect of invertebrate size. Aquatic Conservation: Marine and Freshwater Ecosystems, 12(2), 181-192. doi:10.1002/aqc.511 es_ES
dc.description.references ALLAN, D., ERICKSON, D., & FAY, J. (1997). The influence of catchment land use on stream integrity across multiple spatial scales. Freshwater Biology, 37(1), 149-161. doi:10.1046/j.1365-2427.1997.d01-546.x es_ES
dc.description.references Allan, J. D. (2004). Landscapes and Riverscapes: The Influence of Land Use on Stream Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 35(1), 257-284. doi:10.1146/annurev.ecolsys.35.120202.110122 es_ES
dc.description.references Allen, D. C., & Vaughn, C. C. (2010). Complex hydraulic and substrate variables limit freshwater mussel species richness and abundance. Journal of the North American Benthological Society, 29(2), 383-394. doi:10.1899/09-024.1 es_ES
dc.description.references Almeida, D., Merino-Aguirre, R., & Angeler, D. G. (2013). Benthic invertebrate communities in regulated Mediterranean streams and least-impacted tributaries. Limnologica, 43(1), 34-42. doi:10.1016/j.limno.2012.02.003 es_ES
dc.description.references BASTIAN, M., PEARSON, R. G., & BOYERO, L. (2008). Effects of diversity loss on ecosystem function across trophic levels and ecosystems: A test in a detritus-based tropical food web. Austral Ecology, 33(3), 301-306. doi:10.1111/j.1442-9993.2007.01817.x es_ES
dc.description.references Beisel, J.-N., Usseglio-Polatera, P., & Moreteau, J.-C. (2000). The spatial heterogeneity of a river bottom: a key factor determining macroinvertebrate communities. Assessing the Ecological Integrity of Running Waters, 163-171. doi:10.1007/978-94-011-4164-2_13 es_ES
dc.description.references Beschta, R. L., & Jackson, W. L. (1979). The Intrusion of Fine Sediments into a Stable Gravel Bed. Journal of the Fisheries Research Board of Canada, 36(2), 204-210. doi:10.1139/f79-030 es_ES
dc.description.references Biggs, B. J. F., Ibbitt, R. P., & Jowett, I. G. (2008). Determination of flow regimes for protection of in-river values in New Zealand: an overview. Ecohydrology & Hydrobiology, 8(1), 17-29. doi:10.2478/v10104-009-0002-3 es_ES
dc.description.references Bispo, P. C., Oliveira, L. G., Bini, L. M., & Sousa, K. G. (2006). Ephemeroptera, Plecoptera and Trichoptera assemblages from riffles in mountain streams of Central Brazil: environmental factors influencing the distribution and abundance of immatures. Brazilian Journal of Biology, 66(2b), 611-622. doi:10.1590/s1519-69842006000400005 es_ES
dc.description.references Borcard, D., Legendre, P., & Drapeau, P. (1992). Partialling out the Spatial Component of Ecological Variation. Ecology, 73(3), 1045-1055. doi:10.2307/1940179 es_ES
dc.description.references Boyero, L. (2003). Hydrobiologia, 499(1/3), 161-168. doi:10.1023/a:1026321331092 es_ES
dc.description.references Burt, T., Pinay, G., & Sabater, S. (2010). What do we still need to know about the ecohydrology of riparian zones? Ecohydrology, 3(3), 373-377. doi:10.1002/eco.140 es_ES
dc.description.references Buytaert, W., Celleri, R., Willems, P., Bièvre, B. D., & Wyseure, G. (2006). Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes. Journal of Hydrology, 329(3-4), 413-421. doi:10.1016/j.jhydrol.2006.02.031 es_ES
dc.description.references Cauvy-Fraunié, S., Espinosa, R., Andino, P., Dangles, O., & Jacobsen, D. (2014). Relationships between stream macroinvertebrate communities and new flood-based indices of glacial influence. Freshwater Biology, 59(9), 1916-1925. doi:10.1111/fwb.12395 es_ES
dc.description.references Cázares-Martínez, J., Montaña, C., & Franco, M. (2010). The role of pollen limitation on the coexistence of two dioecious, wind-pollinated, closely related shrubs in a fluctuating environment. Oecologia, 164(3), 679-687. doi:10.1007/s00442-010-1696-z es_ES
dc.description.references Dallas, H., & Ross-Gillespie, V. (2015). Review: Sublethal effects of temperature on freshwater organisms, with special reference to aquatic insects. Water SA, 41(5), 712. doi:10.4314/wsa.v41i5.15 es_ES
dc.description.references Danehy, R. J., Ringler, N. H., & Ruby, R. J. (1999). Hydraulic and Geomorphic Influence on Macroinvertebrate Distribution in the Headwaters of a Small Watershed. Journal of Freshwater Ecology, 14(1), 79-91. doi:10.1080/02705060.1999.9663657 es_ES
dc.description.references Demars, B. O. L., Kemp, J. L., Friberg, N., Usseglio-Polatera, P., & Harper, D. M. (2012). Linking biotopes to invertebrates in rivers: Biological traits, taxonomic composition and diversity. Ecological Indicators, 23, 301-311. doi:10.1016/j.ecolind.2012.04.011 es_ES
dc.description.references Duan, X., Wang, Z., & Tian, S. (2008). Effect of streambed substrate on macroinvertebrate biodiversity. Frontiers of Environmental Science & Engineering in China, 2(1), 122-128. doi:10.1007/s11783-008-0023-y es_ES
dc.description.references Erman, D. C., & Erman, N. A. (1984). The response of stream macroinvertebrates to substrate size and heterogeneity. Hydrobiologia, 108(1), 75-82. doi:10.1007/bf02391635 es_ES
dc.description.references FLECKER, A. S., & FEIFAREK, B. (1994). Disturbance and the temporal variability of invertebrate assemblages in two Andean streams. Freshwater Biology, 31(2), 131-142. doi:10.1111/j.1365-2427.1994.tb00847.x es_ES
dc.description.references Gibbins, C., Batalla, R. J., & Vericat, D. (2010). Invertebrate drift and benthic exhaustion during disturbance: Response of mayflies (Ephemeroptera) to increasing shear stress and river-bed instability. River Research and Applications, 26(4), 499-511. doi:10.1002/rra.1282 es_ES
dc.description.references Gibbins, C. N., Dilks, C. F., Malcolm, R., Soulsby, C., & Juggins, S. (2001). Hydrobiologia, 462(1/3), 205-219. doi:10.1023/a:1013102704693 es_ES
dc.description.references Gibbins, C. N., Vericat, D., Batalla, R. J., & Buendia, C. (2016). Which variables should be used to link invertebrate drift to river hydraulic conditions? Fundamental and Applied Limnology / Archiv für Hydrobiologie, 187(3), 191-205. doi:10.1127/fal/2015/0745 es_ES
dc.description.references Graça, M. A. S. (2001). The Role of Invertebrates on Leaf Litter Decomposition in Streams - a Review. International Review of Hydrobiology, 86(4-5), 383-393. doi:10.1002/1522-2632(200107)86:4/5<383::aid-iroh383>3.0.co;2-d es_ES
dc.description.references Haggerty, S. M., Batzer, D. P., & Jackson, C. R. (2002). Hydrobiologia, 479(1/3), 143-154. doi:10.1023/a:1021034106832 es_ES
dc.description.references Hampel, H., Cocha, J., & Vimos, D. (2010). Incorporation of aquatic ecology to the hydrological investigation of ecosystems in the high Andes. MASKANA, 1(1), 91-100. doi:10.18537/mskn.01.01.07 es_ES
dc.description.references Hannah, D. M., Brown, L. E., Milner, A. M., Gurnell, A. M., McGregor, G. R., Petts, G. E., … Snook, D. L. (2007). Integrating climate–hydrology–ecology for alpine river systems. Aquatic Conservation: Marine and Freshwater Ecosystems, 17(6), 636-656. doi:10.1002/aqc.800 es_ES
dc.description.references Holomuzki, J. R., Feminella, J. W., & Power, M. E. (2010). Biotic interactions in freshwater benthic habitats. Journal of the North American Benthological Society, 29(1), 220-244. doi:10.1899/08-044.1 es_ES
dc.description.references Holzenthal, R. W., & Ríos-Touma, B. (2012). Contulma paluguillensis(Trichoptera:Anomalopsychidae), a new caddisfly from the high Andes of Ecuador, and its natural history. Freshwater Science, 31(2), 442-450. doi:10.1899/11-067.1 es_ES
dc.description.references Jacobsen, D. (2003). Altitudinal changes in diversity of macroinvertebrates from small streams in the Ecuadorian Andes. Archiv für Hydrobiologie, 158(2), 145-167. doi:10.1127/0003-9136/2003/0158-0145 es_ES
dc.description.references Jacobsen, D. (2004). Contrasting patterns in local and zonal family richness of stream invertebrates along an Andean altitudinal gradient. Freshwater Biology, 49(10), 1293-1305. doi:10.1111/j.1365-2427.2004.01274.x es_ES
dc.description.references Jacobsen, D., Andino, P., Calvez, R., Cauvy-Fraunié, S., Espinosa, R., & Dangles, O. (2014). Temporal variability in discharge and benthic macroinvertebrate assemblages in a tropical glacier-fed stream. Freshwater Science, 33(1), 32-45. doi:10.1086/674745 es_ES
dc.description.references Jacobsen, D., Cauvy-Fraunie, S., Andino, P., Espinosa, R., Cueva, D., & Dangles, O. (2014). Runoff and the longitudinal distribution of macroinvertebrates in a glacier-fed stream: implications for the effects of global warming. Freshwater Biology, 59(10), 2038-2050. doi:10.1111/fwb.12405 es_ES
dc.description.references Jacobsen, D., & Encalada, A. (1998). The macroinvertebrate fauna of Ecuadorian highland streams in the wet and dry season. Fundamental and Applied Limnology, 142(1), 53-70. doi:10.1127/archiv-hydrobiol/142/1998/53 es_ES
dc.description.references Jacobsen, D., & Marín, R. (2007). Bolivian Altiplano streams with low richness of macroinvertebrates and large diel fluctuations in temperature and dissolved oxygen. Aquatic Ecology, 42(4), 643-656. doi:10.1007/s10452-007-9127-x es_ES
dc.description.references Jacobsen, D., Rostgaard, S., & Vásconez, J. J. (2003). Are macroinvertebrates in high altitude streams affected by oxygen deficiency? Freshwater Biology, 48(11), 2025-2032. doi:10.1046/j.1365-2427.2003.01140.x es_ES
dc.description.references JACOBSEN, D., SCHULTZ, R., & ENCALADA, A. (1997). Structure and diversity of stream invertebrate assemblages: the influence of temperature with altitude and latitude. Freshwater Biology, 38(2), 247-261. doi:10.1046/j.1365-2427.1997.00210.x es_ES
dc.description.references Jowett, I. G. (1993). A method for objectively identifying pool, run, and riffle habitats from physical measurements. New Zealand Journal of Marine and Freshwater Research, 27(2), 241-248. doi:10.1080/00288330.1993.9516563 es_ES
dc.description.references LADLE, M., COOLING, D. A., WELTON, J. S., & BASS, J. A. B. (1985). Studies on Chironomidae in experimental recirculating stream systems. II. The growth, development and production of a spring generation of Orthocladius (Euorthodadius) calvus Pinder. Freshwater Biology, 15(2), 243-255. doi:10.1111/j.1365-2427.1985.tb00197.x es_ES
dc.description.references Lamouroux, N., Dolédec, S., & Gayraud, S. (2004). Biological traits of stream macroinvertebrate communities: effects of microhabitat, reach, and basin filters. Journal of the North American Benthological Society, 23(3), 449-466. doi:10.1899/0887-3593(2004)023<0449:btosmc>2.0.co;2 es_ES
dc.description.references Lancaster, J., & Belyea, L. R. (1997). Nested Hierarchies and Scale-Dependence of Mechanisms of Flow Refugium Use. Journal of the North American Benthological Society, 16(1), 221-238. doi:10.2307/1468253 es_ES
dc.description.references LI, A. O. Y., & DUDGEON, D. (2008). Food resources of shredders and other benthic macroinvertebrates in relation to shading conditions in tropical Hong Kong streams. Freshwater Biology, 53(10), 2011-2025. doi:10.1111/j.1365-2427.2008.02022.x es_ES
dc.description.references López-López, E., & Sedeño-Díaz, J. E. (2014). Biological Indicators of Water Quality: The Role of Fish and Macroinvertebrates as Indicators of Water Quality. Environmental Indicators, 643-661. doi:10.1007/978-94-017-9499-2_37 es_ES
dc.description.references Matson, E., & Bart, D. (2013). Interactions among fire legacies, grazing and topography predict shrub encroachment in post-agricultural páramo. Landscape Ecology, 28(9), 1829-1840. doi:10.1007/s10980-013-9926-5 es_ES
dc.description.references McIntosh, M. D., Benbow, M. E., & Burky, A. J. (2002). Effects of stream diversion on riffle macroinvertebrate communities in a Maui, Hawaii, stream. River Research and Applications, 18(6), 569-581. doi:10.1002/rra.694 es_ES
dc.description.references MÉRIGOUX, S., LAMOUROUX, N., OLIVIER, J.-M., & DOLÉDEC, S. (2009). Invertebrate hydraulic preferences and predicted impacts of changes in discharge in a large river. Freshwater Biology, 54(6), 1343-1356. doi:10.1111/j.1365-2427.2008.02160.x es_ES
dc.description.references Mesa, L. M. (2010). Effect of spates and land use on macroinvertebrate community in Neotropical Andean streams. Hydrobiologia, 641(1), 85-95. doi:10.1007/s10750-009-0059-4 es_ES
dc.description.references Meyer , J. Wallace , J. Press , M. Huntly , N. Levin , S 2001 Lost linkages and lotic ecology: Rediscovering small streams es_ES
dc.description.references Meyer, J. L., Strayer, D. L., Wallace, J. B., Eggert, S. L., Helfman, G. S., & Leonard, N. E. (2007). The Contribution of Headwater Streams to Biodiversity in River Networks1. JAWRA Journal of the American Water Resources Association, 43(1), 86-103. doi:10.1111/j.1752-1688.2007.00008.x es_ES
dc.description.references Miserendino, M. L., Casaux, R., Archangelsky, M., Di Prinzio, C. Y., Brand, C., & Kutschker, A. M. (2011). Assessing land-use effects on water quality, in-stream habitat, riparian ecosystems and biodiversity in Patagonian northwest streams. Science of The Total Environment, 409(3), 612-624. doi:10.1016/j.scitotenv.2010.10.034 es_ES
dc.description.references Miserendino, M. L., & Masi, C. I. (2010). The effects of land use on environmental features and functional organization of macroinvertebrate communities in Patagonian low order streams. Ecological Indicators, 10(2), 311-319. doi:10.1016/j.ecolind.2009.06.008 es_ES
dc.description.references Miserendino, M. L., & Pizzolán, L. A. (2001). Abundance and Altitudinal Distribution of Ephemeroptera in an Andean-Patagonean River System (Argentina). Trends in Research in Ephemeroptera and Plecoptera, 135-142. doi:10.1007/978-1-4615-1257-8_16 es_ES
dc.description.references Mosquera, G. M., Lazo, P. X., Célleri, R., Wilcox, B. P., & Crespo, P. (2015). Runoff from tropical alpine grasslands increases with areal extent of wetlands. CATENA, 125, 120-128. doi:10.1016/j.catena.2014.10.010 es_ES
dc.description.references Niyogi, D. K., Simon, K. S., & Townsend, C. R. (2003). Breakdown of tussock grass in streams along a gradient of agricultural development in New Zealand. Freshwater Biology, 48(9), 1698-1708. doi:10.1046/j.1365-2427.2003.01104.x es_ES
dc.description.references Parsons, M., Thoms, M. C., & Norris, R. H. (2003). Scales of Macroinvertebrate Distribution in Relation to the Hierarchical Organization of River Systems. Journal of the North American Benthological Society, 22(1), 105-122. doi:10.2307/1467981 es_ES
dc.description.references Poff, N. L. (1997). Landscape Filters and Species Traits: Towards Mechanistic Understanding and Prediction in Stream Ecology. Journal of the North American Benthological Society, 16(2), 391-409. doi:10.2307/1468026 es_ES
dc.description.references Principe, R. E., Raffaini, G. B., Gualdoni, C. M., Oberto, A. M., & Corigliano, M. C. (2007). Do hydraulic units define macroinvertebrate assemblages in mountain streams of central Argentina? Limnologica, 37(4), 323-336. doi:10.1016/j.limno.2007.06.001 es_ES
dc.description.references Quinn, G. P., & Keough, M. J. (2002). Experimental Design and Data Analysis for Biologists. doi:10.1017/cbo9780511806384 es_ES
dc.description.references Rempel, L. L., Richardson, J. S., & Healey, M. C. (2000). Macroinvertebrate community structure along gradients of hydraulic and sedimentary conditions in a large gravel-bed river. Freshwater Biology, 45(1), 57-73. doi:10.1046/j.1365-2427.2000.00617.x es_ES
dc.description.references Rice, S. P., Buffin-Bélanger, T., Lancaster, J., & Reid, I. (2007). 24 Movements of a macroinvertebrate (Potamophylax latipennis) across a gravel-bed substrate: effects of local hydraulics and micro-topography under increasing discharge. Developments in Earth Surface Processes, 637-659. doi:10.1016/s0928-2025(07)11152-4 es_ES
dc.description.references Rice, S. P., Greenwood, M. T., & Joyce, C. B. (2001). Tributaries, sediment sources, and the longitudinal organisation of macroinvertebrate fauna along river systems. Canadian Journal of Fisheries and Aquatic Sciences, 58(4), 824-840. doi:10.1139/f01-022 es_ES
dc.description.references Ríos-Touma, B., Encalada, A. C., & Prat Fornells, N. (2011). Macroinvertebrate Assemblages of an Andean High-Altitude Tropical Stream: The Importance of Season and Flow. International Review of Hydrobiology, 96(6), 667-685. doi:10.1002/iroh.201111342 es_ES
dc.description.references Ríos-Touma, B., Holzenthal, R. W., Huisman, J., Thomson, R., & Rázuri-Gonzales, E. (2017). Diversity and distribution of the Caddisflies (Insecta: Trichoptera) of Ecuador. PeerJ, 5, e2851. doi:10.7717/peerj.2851 es_ES
dc.description.references Rolls, R. J., Leigh, C., & Sheldon, F. (2012). Mechanistic effects of low-flow hydrology on riverine ecosystems: ecological principles and consequences of alteration. Freshwater Science, 31(4), 1163-1186. doi:10.1899/12-002.1 es_ES
dc.description.references Scarsbrook, M. R., & Halliday, J. (1999). Transition from pasture to native forest land‐use along stream continua: Effects on stream ecosystems and implications for restoration. New Zealand Journal of Marine and Freshwater Research, 33(2), 293-310. doi:10.1080/00288330.1999.9516878 es_ES
dc.description.references Scheibler, E., Roig-Juñent, S., & Claps, M. (2014). Chironomid (Insecta: Diptera) assemblages along an Andean altitudinal gradient. Aquatic Biology, 20(2), 169-184. doi:10.3354/ab00554 es_ES
dc.description.references Schwendel, A. C., Joy, M. K., Death, R. G., & Fuller, I. C. (2011). A macroinvertebrate index to assess stream-bed stability. Marine and Freshwater Research, 62(1), 30. doi:10.1071/mf10137 es_ES
dc.description.references Shoffner, D., & Royall, D. (2008). Hydraulic habitat composition and diversity in rural and urban stream reaches of the North Carolina Piedmont (USA). River Research and Applications, 24(8), 1082-1103. doi:10.1002/rra.1097 es_ES
dc.description.references Smilauer, P., & Lepš, J. (2014). Multivariate Analysis of Ecological Data using CANOCO 5. doi:10.1017/cbo9781139627061 es_ES
dc.description.references Smits, A. P., Schindler, D. E., & Brett, M. T. (2015). Geomorphology controls the trophic base of stream food webs in a boreal watershed. Ecology, 96(7), 1775-1782. doi:10.1890/14-2247.1 es_ES
dc.description.references Spehn, E. M., Liberman, M., & Körner, C. (Eds.). (2006). Land Use Change and Mountain Biodiversity. doi:10.1201/9781420002874 es_ES
dc.description.references Statzner, B. (1981). A method to estimate the population size of benthic macroinvertebrates in streams. Oecologia, 51(2), 157-161. doi:10.1007/bf00540594 es_ES
dc.description.references STATZNER, B., & BÊCHE, L. A. (2010). Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshwater Biology, 55, 80-119. doi:10.1111/j.1365-2427.2009.02369.x es_ES
dc.description.references Statzner, B., Gore, J. A., & Resh, V. H. (1988). Hydraulic Stream Ecology: Observed Patterns and Potential Applications. Journal of the North American Benthological Society, 7(4), 307-360. doi:10.2307/1467296 es_ES
dc.description.references Steinman, A. D., Lamberti, G. A., & Leavitt, P. R. (2007). Biomass and Pigments of Benthic Algae. Methods in Stream Ecology, 357-379. doi:10.1016/b978-012332908-0.50024-3 es_ES
dc.description.references SUREN, A. M., & JOWETT, I. G. (2006). Effects of floods versus low flows on invertebrates in a New Zealand gravel-bed river. Freshwater Biology, 51(12), 2207-2227. doi:10.1111/j.1365-2427.2006.01646.x es_ES
dc.description.references Ter Braak, C. J. F. (1986). Canonical Correspondence Analysis: A New Eigenvector Technique for Multivariate Direct Gradient Analysis. Ecology, 67(5), 1167-1179. doi:10.2307/1938672 es_ES
dc.description.references Thirion , C. 2016 The determination of flow and habitat requirements for selected riverine macroinvertebrates es_ES
dc.description.references Tomanova, S., Goitia, E., & Helešic, J. (2006). Trophic Levels and Functional Feeding Groups of Macroinvertebrates in Neotropical Streams. Hydrobiologia, 556(1), 251-264. doi:10.1007/s10750-005-1255-5 es_ES
dc.description.references Tomanova, S., Moya, N., & Oberdorff, T. (2008). Using macroinvertebrate biological traits for assessing biotic integrity of neotropical streams. River Research and Applications, 24(9), 1230-1239. doi:10.1002/rra.1148 es_ES
dc.description.references Tomanova, S., & Usseglio-Polatera, P. (2007). Patterns of benthic community traits in neotropical streams: relationship to mesoscale spatial variability. Fundamental and Applied Limnology / Archiv für Hydrobiologie, 170(3), 243-255. doi:10.1127/1863-9135/2007/0170-0243 es_ES
dc.description.references Trimble, S. W. (1997). Stream channel erosion and change resulting from riparian forests. Geology, 25(5), 467. doi:10.1130/0091-7613(1997)025<0467:sceacr>2.3.co;2 es_ES
dc.description.references Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The River Continuum Concept. Canadian Journal of Fisheries and Aquatic Sciences, 37(1), 130-137. doi:10.1139/f80-017 es_ES
dc.description.references Vaughn, C. C. (1985). Evolutionary Ecology of Case Architecture in the Snailcase Caddisfly, Helicopsyche borealis. Freshwater Invertebrate Biology, 4(4), 178-186. doi:10.2307/1467159 es_ES
dc.description.references Villamarín, C., Rieradevall, M., Paul, M. J., Barbour, M. T., & Prat, N. (2013). A tool to assess the ecological condition of tropical high Andean streams in Ecuador and Peru: The IMEERA index. Ecological Indicators, 29, 79-92. doi:10.1016/j.ecolind.2012.12.006 es_ES
dc.description.references Weigel, B. M., Wang, L., Rasmussen, P. W., Butcher, J. T., Stewart, P. M., Simon, T. P., & Wiley, M. J. (2003). Relative influence of variables at multiple spatial scales on stream macroinvertebrates in the Northern Lakes and Forest ecoregion, U.S.A. Freshwater Biology, 48(8), 1440-1461. doi:10.1046/j.1365-2427.2003.01076.x es_ES
dc.description.references Wilcox, A. C., Peckarsky, B. L., Taylor, B. W., & Encalada, A. C. (2008). Hydraulic and geomorphic effects on mayfly drift in high-gradient streams at moderate discharges. Ecohydrology, 1(2), 176-186. doi:10.1002/eco.16 es_ES
dc.description.references Wyżga, B., Oglęcki, P., Radecki-Pawlik, A., Skalski, T., & Zawiejska, J. (2012). Hydromorphological complexity as a driver of the diversity of benthic invertebrate communities in the Czarny Dunajec River, Polish Carpathians. Hydrobiologia, 696(1), 29-46. doi:10.1007/s10750-012-1180-3 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem