Mostrar el registro sencillo del ítem
dc.contributor.author | Sharma, Sidharath | es_ES |
dc.contributor.author | Broatch, A. | es_ES |
dc.contributor.author | GARCIA TISCAR, JORGE | es_ES |
dc.contributor.author | Allport, John M. | es_ES |
dc.contributor.author | Nickson, Ambrose K. | es_ES |
dc.date.accessioned | 2020-09-12T03:34:18Z | |
dc.date.available | 2020-09-12T03:34:18Z | |
dc.date.issued | 2020-10 | es_ES |
dc.identifier.issn | 1468-0874 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/149928 | |
dc.description.abstract | [EN] In this article, the acoustic characterisation of a turbocharger compressor with ported shroud design is carried out through the numerical simulation of the system operating under design conditions of maximum isentropic efficiency. While ported shroud compressors have been proposed as a way to control the flow near unstable conditions in order to obtain a more stable operation and enhance deep surge margin, it is often assumed that the behaviour under stable design conditions is characterised by a smooth, non-detached flow that matches an equivalent standard compressor. Furthermore, research is scarce regarding the acoustic effects of the ported shroud addition, especially under the design conditions. To analyse the flow field evolution and its relation with the noise generation, spectral signatures using statistical and scale-resolving turbulence modelling methods are obtained after successfully validating the performance and acoustic predictions of the numerical model with experimental measurements. Propagation of the frequency content through the ducts has been estimated with the aid of pressure decomposition methods to enhance the content coming from the compressor. Expected acoustic phenomena such as `buzz-saw¿ tones, blade passing peaks and broadband noise are correctly identified in the modelled spectrum. Analysis of the flow behaviour in the ported shroud shows rotating structures through the slot that may impact the acoustic and vibration response. Further inspection of the pressure field through modal decomposition confirms the influence of the ported shroud cavity in noise generation and propagation, especially at lower frequencies, suggesting that further research should be carried out on the impact these flow enhancement solutions have on the noise emission of the turbocharger. | es_ES |
dc.description.sponsorship | The project was sponsored and supported by BorgWarner Turbo Systems and the Regional Growth Fund (RGF Grant Award 01.09.07.01/1789C). The authors would like to thank BorgWarner Turbo Systems for permission to publish the results presented in this article. The support of the HPC group at the University of Huddersfield is gratefully acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | International Journal of Engine Research | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Compressor noise | es_ES |
dc.subject | Large eddy simulation | es_ES |
dc.subject | Modal decomposition | es_ES |
dc.subject | Proper orthogonal decomposition | es_ES |
dc.subject | Noise vibration & harshness | es_ES |
dc.subject | Computational fluid dynamics | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Acoustic characteristics of a ported shroud turbocompressor operating at design conditions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/1468087418814635 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/RGF//01.09.07.01%2F1789C/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Sharma, S.; Broatch, A.; Garcia Tiscar, J.; Allport, JM.; Nickson, AK. (2020). Acoustic characteristics of a ported shroud turbocompressor operating at design conditions. International Journal of Engine Research. 21(8):1454-1468. https://doi.org/10.1177/1468087418814635 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/1468087418814635 | es_ES |
dc.description.upvformatpinicio | 1454 | es_ES |
dc.description.upvformatpfin | 1468 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.pasarela | S\373112 | es_ES |
dc.contributor.funder | BorgWarner Turbo Systems | es_ES |
dc.contributor.funder | Regional Growth Fund, Reino Unido | es_ES |
dc.description.references | Sundström, E., Semlitsch, B., & Mihăescu, M. (2017). Generation Mechanisms of Rotating Stall and Surge in Centrifugal Compressors. Flow, Turbulence and Combustion, 100(3), 705-719. doi:10.1007/s10494-017-9877-z | es_ES |
dc.description.references | Gonzalez, A., Ferrer, M., de Diego, M., Piñero, G., & Garcia-Bonito, J. . (2003). Sound quality of low-frequency and car engine noises after active noise control. Journal of Sound and Vibration, 265(3), 663-679. doi:10.1016/s0022-460x(02)01462-1 | es_ES |
dc.description.references | Brizon, C. J. da S., & Bauzer Medeiros, E. (2012). Combining subjective and objective assessments to improve acoustic comfort evaluation of motor cars. Applied Acoustics, 73(9), 913-920. doi:10.1016/j.apacoust.2012.03.013 | es_ES |
dc.description.references | Teng, C., & Homco, S. (2009). Investigation of Compressor Whoosh Noise in Automotive Turbochargers. SAE International Journal of Passenger Cars - Mechanical Systems, 2(1), 1345-1351. doi:10.4271/2009-01-2053 | es_ES |
dc.description.references | Figurella, N., Dehner, R., Selamet, A., Tallio, K., Miazgowicz, K., & Wade, R. (2014). Noise at the mid to high flow range of a turbocharger compressor. Noise Control Engineering Journal, 62(5), 306-312. doi:10.3397/1/376229 | es_ES |
dc.description.references | Torregrosa, A. J., Broatch, A., Margot, X., García-Tíscar, J., Narvekar, Y., & Cheung, R. (2017). Local flow measurements in a turbocharger compressor inlet. Experimental Thermal and Fluid Science, 88, 542-553. doi:10.1016/j.expthermflusci.2017.07.007 | es_ES |
dc.description.references | Broatch, A., Galindo, J., Navarro, R., García-Tíscar, J., Daglish, A., & Sharma, R. K. (2015). Simulations and measurements of automotive turbocharger compressor whoosh noise. Engineering Applications of Computational Fluid Mechanics, 9(1), 12-20. doi:10.1080/19942060.2015.1004788 | es_ES |
dc.description.references | Raitor, T., & Neise, W. (2008). Sound generation in centrifugal compressors. Journal of Sound and Vibration, 314(3-5), 738-756. doi:10.1016/j.jsv.2008.01.034 | es_ES |
dc.description.references | Galindo, J., Tiseira, A., Navarro, R., & López, M. A. (2015). Influence of tip clearance on flow behavior and noise generation of centrifugal compressors in near-surge conditions. International Journal of Heat and Fluid Flow, 52, 129-139. doi:10.1016/j.ijheatfluidflow.2014.12.004 | es_ES |
dc.description.references | Broatch, A., Galindo, J., Navarro, R., & García-Tíscar, J. (2014). Methodology for experimental validation of a CFD model for predicting noise generation in centrifugal compressors. International Journal of Heat and Fluid Flow, 50, 134-144. doi:10.1016/j.ijheatfluidflow.2014.06.006 | es_ES |
dc.description.references | Semlitsch, B., & Mihăescu, M. (2016). Flow phenomena leading to surge in a centrifugal compressor. Energy, 103, 572-587. doi:10.1016/j.energy.2016.03.032 | es_ES |
dc.description.references | Sundström, E., Semlitsch, B., & Mihăescu, M. (2018). Acoustic signature of flow instabilities in radial compressors. Journal of Sound and Vibration, 434, 221-236. doi:10.1016/j.jsv.2018.07.040 | es_ES |
dc.description.references | Torregrosa, A. J., Broatch, A., Margot, X., & García-Tíscar, J. (2016). Experimental methodology for turbocompressor in-duct noise evaluation based on beamforming wave decomposition. Journal of Sound and Vibration, 376, 60-71. doi:10.1016/j.jsv.2016.04.035 | es_ES |
dc.description.references | Nicoud, F., & Ducros, F. (1999). Flow, Turbulence and Combustion, 62(3), 183-200. doi:10.1023/a:1009995426001 | es_ES |
dc.description.references | Chow, P., Cross, M., & Pericleous, K. (1996). A natural extension of the conventional finite volume method into polygonal unstructured meshes for CFD application. Applied Mathematical Modelling, 20(2), 170-183. doi:10.1016/0307-904x(95)00156-e | es_ES |
dc.description.references | Kaji, S., & Okazaki, T. (1970). Generation of sound by rotor-stator interaction. Journal of Sound and Vibration, 13(3), 281-307. doi:10.1016/s0022-460x(70)80020-7 | es_ES |
dc.description.references | Sivagnanasundaram, S., Spence, S., & Early, J. (2013). Map Width Enhancement Technique for a Turbocharger Compressor. Journal of Turbomachinery, 136(6). doi:10.1115/1.4007895 | es_ES |
dc.description.references | Aubry, N. (1991). On the hidden beauty of the proper orthogonal decomposition. Theoretical and Computational Fluid Dynamics, 2(5-6), 339-352. doi:10.1007/bf00271473 | es_ES |
dc.description.references | Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1-3), 37-52. doi:10.1016/0169-7439(87)80084-9 | es_ES |
dc.description.references | LIANG, Y. C., LEE, H. P., LIM, S. P., LIN, W. Z., LEE, K. H., & WU, C. G. (2002). PROPER ORTHOGONAL DECOMPOSITION AND ITS APPLICATIONS—PART I: THEORY. Journal of Sound and Vibration, 252(3), 527-544. doi:10.1006/jsvi.2001.4041 | es_ES |
dc.description.references | Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433-459. doi:10.1002/wics.101 | es_ES |
dc.description.references | Nikiforov, V. (2007). The energy of graphs and matrices. Journal of Mathematical Analysis and Applications, 326(2), 1472-1475. doi:10.1016/j.jmaa.2006.03.072 | es_ES |