Mostrar el registro sencillo del ítem
dc.contributor.author | Fraga-Timiraos, Ana Belén | es_ES |
dc.contributor.author | Francés-Monerris, Antonio | es_ES |
dc.contributor.author | Rodríguez Muñiz, Gemma María | es_ES |
dc.contributor.author | Navarrete-Miguel, Miriam | es_ES |
dc.contributor.author | Miranda Alonso, Miguel Ángel | es_ES |
dc.contributor.author | Roca Sanjuan, Daniel | es_ES |
dc.contributor.author | Lhiaubet, Virginie Lyria | es_ES |
dc.date.accessioned | 2020-09-12T03:35:12Z | |
dc.date.available | 2020-09-12T03:35:12Z | |
dc.date.issued | 2018-10-12 | es_ES |
dc.identifier.issn | 0947-6539 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/149958 | |
dc.description.abstract | [EN] Azetidines are interesting compounds in medicine and chemistry as bioactive scaffolds and synthetic intermediates. However, photochemical processes involved in the generation and fate of azetidine-derived radical ions have scarcely been reported. In this context, the photoreduction of this four-membered heterocycle might be relevant in connection with the DNA (6-4) photoproduct obtained from photolyase. Herein, a stable azabipyrimidinic azetidine (AZT(m)), obtained from cycloaddition between thymine and 6-azauracil units, is considered to be an interesting model of the proposed azetidine-like intermediate. Hence, its photoreduction and photo-oxidation are thoroughly investigated through a multifaceted approach, including spectroscopic, analytical, and electrochemical studies, complemented by CASPT2 and DFT calculations. Both injection and removal of an electron result in the formation of radical ions, which evolve towards repaired thymine and azauracil units. Whereas photoreduction energetics are similar to those of the cyclobutane thymine dimers, photo-oxidation is clearly more favorable in the azetidine. Ring opening occurs with relatively low activation barriers (< 13 kcal mol(-1)) and the process is clearly exergonic for photoreduction. In general, a good correlation has been observed between the experimental results and theoretical calculations, which has allowed a synergic understanding of the phenomenon. | es_ES |
dc.description.sponsorship | The Spanish Government (CTQ2015-70164-P, CTQ2017-87054-C2-2-P, SVP-2013-068057 grants to A.B.F.-R. and RYC-2015-19234 grant to D.R.-S.) and the Valencia Regional Government (Prometeo/2017/075) are acknowledged for financial support. A.F.-M. is grateful to the Region Grand Est government (France) and the Universite de Lorraine for their financial support. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Chemistry - A European Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Cycloaddition | es_ES |
dc.subject | Density functional calculations | es_ES |
dc.subject | Electron transfer | es_ES |
dc.subject | Photochemistry | es_ES |
dc.subject | Radicals | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Experimental and Theoretical Study on the Cycloreversion of a Nucleobase-Derived Azetidine by Photoinduced Electron Transfer | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/chem.201803298 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87054-C2-2-P/ES/FOTOFISICA DE SISTEMAS ORGANICOS DE TRANSFERENCIA DE CARGA INNOVADORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SVP-2013-068057/ES/SVP-2013-068057/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RYC-2015-19234/ES/RYC-2015-19234/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2015-70164-P/ES/LESIONES DEL ADN COMO FOTOSENSIBILIZADORES INTRINSECOS - CONCEPTO DE CABALLO DE TROYA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Fraga-Timiraos, AB.; Francés-Monerris, A.; Rodríguez Muñiz, GM.; Navarrete-Miguel, M.; Miranda Alonso, MÁ.; Roca Sanjuan, D.; Lhiaubet, VL. (2018). Experimental and Theoretical Study on the Cycloreversion of a Nucleobase-Derived Azetidine by Photoinduced Electron Transfer. Chemistry - A European Journal. 24(57):15346-15354. https://doi.org/10.1002/chem.201803298 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/chem.201803298 | es_ES |
dc.description.upvformatpinicio | 15346 | es_ES |
dc.description.upvformatpfin | 15354 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 57 | es_ES |
dc.identifier.pmid | 30053323 | es_ES |
dc.relation.pasarela | S\379636 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Université de Lorraine | es_ES |
dc.contributor.funder | Conseil Régional Grand Est, Francia | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Antermite, D., Degennaro, L., & Luisi, R. (2017). Recent advances in the chemistry of metallated azetidines. Organic & Biomolecular Chemistry, 15(1), 34-50. doi:10.1039/c6ob01665k | es_ES |
dc.description.references | Canu, N., Belin, P., Thai, R., Correia, I., Lequin, O., Seguin, J., … Gondry, M. (2018). Incorporation of Non-canonical Amino Acids into 2,5-Diketopiperazines by Cyclodipeptide Synthases. Angewandte Chemie International Edition, 57(12), 3118-3122. doi:10.1002/anie.201712536 | es_ES |
dc.description.references | Canu, N., Belin, P., Thai, R., Correia, I., Lequin, O., Seguin, J., … Gondry, M. (2018). Incorporation of Non-canonical Amino Acids into 2,5-Diketopiperazines by Cyclodipeptide Synthases. Angewandte Chemie, 130(12), 3172-3176. doi:10.1002/ange.201712536 | es_ES |
dc.description.references | Meyer, F. (2016). Trifluoromethyl nitrogen heterocycles: synthetic aspects and potential biological targets. Chemical Communications, 52(15), 3077-3094. doi:10.1039/c5cc09414c | es_ES |
dc.description.references | Brandi, A., Cicchi, S., & Cordero, F. M. (2008). Novel Syntheses of Azetidines and Azetidinones. Chemical Reviews, 108(9), 3988-4035. doi:10.1021/cr800325e | es_ES |
dc.description.references | Carreira, E. M., & Fessard, T. C. (2014). Four-Membered Ring-Containing Spirocycles: Synthetic Strategies and Opportunities. Chemical Reviews, 114(16), 8257-8322. doi:10.1021/cr500127b | es_ES |
dc.description.references | Lopchuk, J. M., Fjelbye, K., Kawamata, Y., Malins, L. R., Pan, C.-M., Gianatassio, R., … Baran, P. S. (2017). Strain-Release Heteroatom Functionalization: Development, Scope, and Stereospecificity. Journal of the American Chemical Society, 139(8), 3209-3226. doi:10.1021/jacs.6b13229 | es_ES |
dc.description.references | Hameed, A., Javed, S., Noreen, R., Huma, T., Iqbal, S., Umbreen, H., … Farooq, T. (2017). Facile and Green Synthesis of Saturated Cyclic Amines. Molecules, 22(10), 1691. doi:10.3390/molecules22101691 | es_ES |
dc.description.references | Mehra, V., Lumb, I., Anand, A., & Kumar, V. (2017). Recent advances in synthetic facets of immensely reactive azetidines. RSC Adv., 7(72), 45763-45783. doi:10.1039/c7ra08884a | es_ES |
dc.description.references | Kumarasamy, E., Kandappa, S. K., Raghunathan, R., Jockusch, S., & Sivaguru, J. (2017). Realizing an Aza Paternò-Büchi Reaction. Angewandte Chemie International Edition, 56(25), 7056-7061. doi:10.1002/anie.201702273 | es_ES |
dc.description.references | Kumarasamy, E., Kandappa, S. K., Raghunathan, R., Jockusch, S., & Sivaguru, J. (2017). Realizing an Aza Paternò-Büchi Reaction. Angewandte Chemie, 129(25), 7162-7167. doi:10.1002/ange.201702273 | es_ES |
dc.description.references | Schmid, S. C., Guzei, I. A., & Schomaker, J. M. (2017). A Stereoselective [3+1] Ring Expansion for the Synthesis of Highly Substituted Methylene Azetidines. Angewandte Chemie International Edition, 56(40), 12229-12233. doi:10.1002/anie.201705202 | es_ES |
dc.description.references | Schmid, S. C., Guzei, I. A., & Schomaker, J. M. (2017). A Stereoselective [3+1] Ring Expansion for the Synthesis of Highly Substituted Methylene Azetidines. Angewandte Chemie, 129(40), 12397-12401. doi:10.1002/ange.201705202 | es_ES |
dc.description.references | Diethelm, S., & Carreira, E. M. (2015). Total Synthesis of Gelsemoxonine through a Spirocyclopropane Isoxazolidine Ring Contraction. Journal of the American Chemical Society, 137(18), 6084-6096. doi:10.1021/jacs.5b02574 | es_ES |
dc.description.references | Glawar, A. F. G., Jenkinson, S. F., Thompson, A. L., Nakagawa, S., Kato, A., Butters, T. D., & Fleet, G. W. J. (2013). 3-Hydroxyazetidine Carboxylic Acids: Non-Proteinogenic Amino Acids for Medicinal Chemists. ChemMedChem, 8(4), 658-666. doi:10.1002/cmdc.201200541 | es_ES |
dc.description.references | Kagiyama, I., Kato, H., Nehira, T., Frisvad, J. C., Sherman, D. H., Williams, R. M., & Tsukamoto, S. (2015). Taichunamides: Prenylated Indole Alkaloids from Aspergillus taichungensis (IBT 19404). Angewandte Chemie International Edition, 55(3), 1128-1132. doi:10.1002/anie.201509462 | es_ES |
dc.description.references | Kagiyama, I., Kato, H., Nehira, T., Frisvad, J. C., Sherman, D. H., Williams, R. M., & Tsukamoto, S. (2015). Taichunamides: Prenylated Indole Alkaloids from Aspergillus taichungensis (IBT 19404). Angewandte Chemie, 128(3), 1140-1144. doi:10.1002/ange.201509462 | es_ES |
dc.description.references | Kato, N., Comer, E., Sakata-Kato, T., Sharma, A., Sharma, M., Maetani, M., … Corey, V. (2016). Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature, 538(7625), 344-349. doi:10.1038/nature19804 | es_ES |
dc.description.references | Wang, X., Liu, C., Zeng, X., Wang, X., Wang, X., & Hu, Y. (2017). Ruthenium-Catalyzed Synthesis of Fused Tricyclic 1H-2,3-Dihydropyrimido[1,2-a]quinolines in One Step. Organic Letters, 19(13), 3378-3381. doi:10.1021/acs.orglett.7b01330 | es_ES |
dc.description.references | Sarazen, M. L., & Jones, C. W. (2017). Insights into Azetidine Polymerization for the Preparation of Poly(propylenimine)-Based CO2 Adsorbents. Macromolecules, 50(23), 9135-9143. doi:10.1021/acs.macromol.7b02402 | es_ES |
dc.description.references | Schnitzer, T., & Wennemers, H. (2017). Influence of theTrans/CisConformer Ratio on the Stereoselectivity of Peptidic Catalysts. Journal of the American Chemical Society, 139(43), 15356-15362. doi:10.1021/jacs.7b06194 | es_ES |
dc.description.references | Kaiser, A., Mayer, K. K., Sellmer, A., & Wiegrebe, W. (2003). Electron Impact Induced Fragmentation of Aromatic Alkoxyimines II [5]. Formation and Transformation of Heterocyclic Radical Cations in the Gas Phase a. Monatshefte f�r Chemie / Chemical Monthly, 134(3), 343-354. doi:10.1007/s00706-002-0485-8 | es_ES |
dc.description.references | Andreu, I., Delgado, J., Espinós, A., Pérez-Ruiz, R., Jiménez, M. C., & Miranda, M. A. (2008). Cycloreversion of Azetidines via Oxidative Electron Transfer. Steady-State and Time-Resolved Studies. Organic Letters, 10(22), 5207-5210. doi:10.1021/ol802181u | es_ES |
dc.description.references | Fraga-Timiraos, A. B., Lhiaubet-Vallet, V., & Miranda, M. A. (2016). Repair of a Dimeric Azetidine Related to the Thymine-Cytosine (6- 4) Photoproduct by Electron Transfer Photoreduction. Angewandte Chemie International Edition, 55(20), 6037-6040. doi:10.1002/anie.201601475 | es_ES |
dc.description.references | Fraga-Timiraos, A. B., Lhiaubet-Vallet, V., & Miranda, M. A. (2016). Repair of a Dimeric Azetidine Related to the Thymine-Cytosine (6- 4) Photoproduct by Electron Transfer Photoreduction. Angewandte Chemie, 128(20), 6141-6144. doi:10.1002/ange.201601475 | es_ES |
dc.description.references | Fraga-Timiraos, A., Rodríguez-Muñiz, G., Peiro-Penalba, V., Miranda, M., & Lhiaubet-Vallet, V. (2016). Stereoselective Fluorescence Quenching in the Electron Transfer Photooxidation of Nucleobase-Related Azetidines by Cyanoaromatics. Molecules, 21(12), 1683. doi:10.3390/molecules21121683 | es_ES |
dc.description.references | Pérez-Ruiz, R., Jiménez, M. C., & Miranda, M. A. (2014). Hetero-cycloreversions Mediated by Photoinduced Electron Transfer. Accounts of Chemical Research, 47(4), 1359-1368. doi:10.1021/ar4003224 | es_ES |
dc.description.references | Leo, E. A., Domingo, L. R., Miranda, M. A., & Tormos, R. (2006). Photogeneration and Reactivity of 1,n-Diphenyl-1,n-azabiradicals. The Journal of Organic Chemistry, 71(12), 4439-4444. doi:10.1021/jo0601967 | es_ES |
dc.description.references | Cichon, M. K., Arnold, S., & Carell, T. (2002). A (6-4) Photolyase Model: Repair of DNA (6-4) Lesions Requires a Reduced and Deprotonated Flavin This work was supported by the Volkswagen Foundation, the Fonds der Chemischen Industry, and the Bundesministerium für Bildung und Forschung (BMBF: Neue Medien in der Bildung). Angewandte Chemie International Edition, 41(5), 767. doi:10.1002/1521-3773(20020301)41:5<767::aid-anie767>3.0.co;2-b | es_ES |
dc.description.references | Cichon, M. K., Arnold, S., & Carell, T. (2002). A (6-4) Photolyase Model: Repair of DNA (6-4) Lesions Requires a Reduced and Deprotonated Flavin. Angewandte Chemie, 114(5), 793-796. doi:10.1002/1521-3757(20020301)114:5<793::aid-ange793>3.0.co;2-w | es_ES |
dc.description.references | Prakash, G., & Falvey, D. E. (1995). Model studies of the (6-4) photoproduct DNA photolyase: Synthesis and photosensitized splitting of a thymine-5,6-oxetane. Journal of the American Chemical Society, 117(45), 11375-11376. doi:10.1021/ja00150a050 | es_ES |
dc.description.references | Joseph, A., & Falvey, D. E. (2002). Photoinduced electron transfer cleavage of oxetane adducts of uracil and cytosine. Photochemical & Photobiological Sciences, 1(9), 632-635. doi:10.1039/b201740g | es_ES |
dc.description.references | Trzcionka, J., Lhiaubet-Vallet, V., Paris, C., Belmadoui, N., Climent, M. J., & Miranda, M. A. (2007). Model Studies on a Carprofen Derivative as Dual Photosensitizer for Thymine Dimerization and (6–4) Photoproduct Repair. ChemBioChem, 8(4), 402-407. doi:10.1002/cbic.200600394 | es_ES |
dc.description.references | Wu, Q.-Q., & Song, Q.-H. (2010). Photosensitized Splitting of Thymine Dimer or Oxetane Unit by a CovalentlyN-Linked Carbazole via Electron Transfer in Different Marcus Regions. The Journal of Physical Chemistry B, 114(30), 9827-9832. doi:10.1021/jp1035579 | es_ES |
dc.description.references | Pérez-Ruiz, R., Miranda, M. A., Alle, R., Meerholz, K., & Griesbeck, A. G. (2006). An efficient carbonyl-alkene metathesis of bicyclic oxetanes: photoinduced electron transfer reduction of the Paternò–Büchi adducts from 2,3-dihydrofuran and aromatic aldehydes. Photochem. Photobiol. Sci., 5(1), 51-55. doi:10.1039/b513875b | es_ES |
dc.description.references | Izquierdo, M. A., Domingo, L. R., & Miranda, M. A. (2005). Theoretical Calculations on the Cycloreversion of Oxetane Radical Cations. The Journal of Physical Chemistry A, 109(11), 2602-2607. doi:10.1021/jp045832o | es_ES |
dc.description.references | Miranda, M. A., & Izquierdo, M. A. (2003). Chemical and transient spectroscopic evidence for C2–C3 cleavage of 2,3-diaryloxetane radical cations. Chemical Communications, (3), 364-365. doi:10.1039/b209500a | es_ES |
dc.description.references | Miranda, M. A., & Izquierdo, M. A. (2002). Stepwise Cycloreversion of Oxetane Radical Cations with Initial C−O Bond Cleavage. Journal of the American Chemical Society, 124(23), 6532-6533. doi:10.1021/ja025697y | es_ES |
dc.description.references | Pérez-Ruiz, R., Sáez, J. A., Domingo, L. R., Jiménez, M. C., & Miranda, M. A. (2012). Oxetane Ring Enlargement through Nucleophilic Trapping of Radical Cations by Acetonitrile. Organic Letters, 14(22), 5700-5703. doi:10.1021/ol302717s | es_ES |
dc.description.references | Glas, A. F., Schneider, S., Maul, M. J., Hennecke, U., & Carell, T. (2009). Crystal Structure of the T(6-4)C Lesion in Complex with a (6-4) DNA Photolyase and Repair of UV-Induced (6-4) and Dewar Photolesions. Chemistry - A European Journal, 15(40), 10387-10396. doi:10.1002/chem.200901004 | es_ES |
dc.description.references | Maul, M. J., Barends, T. R. M., Glas, A. F., Cryle, M. J., Domratcheva, T., Schneider, S., … Carell, T. (2008). Crystal Structure and Mechanism of a DNA (6-4) Photolyase. Angewandte Chemie International Edition, 47(52), 10076-10080. doi:10.1002/anie.200804268 | es_ES |
dc.description.references | Maul, M. J., Barends, T. R. M., Glas, A. F., Cryle, M. J., Domratcheva, T., Schneider, S., … Carell, T. (2008). Röntgenkristallstruktur und Mechanismus der DNA-(6-4)-Photolyase. Angewandte Chemie, 120(52), 10230-10234. doi:10.1002/ange.200804268 | es_ES |
dc.description.references | Faraji, S., & Dreuw, A. (2017). Insights into Light-driven DNA Repair by Photolyases: Challenges and Opportunities for Electronic Structure Theory. Photochemistry and Photobiology, 93(1), 37-50. doi:10.1111/php.12679 | es_ES |
dc.description.references | Yamamoto, J., Plaza, P., & Brettel, K. (2017). Repair of (6-4) Lesions in DNA by (6-4) Photolyase: 20 Years of Quest for the Photoreaction Mechanism. Photochemistry and Photobiology, 93(1), 51-66. doi:10.1111/php.12696 | es_ES |
dc.description.references | Zhang, M., Wang, L., & Zhong, D. (2017). Photolyase: Dynamics and Mechanisms of Repair of Sun-Induced DNA Damage. Photochemistry and Photobiology, 93(1), 78-92. doi:10.1111/php.12695 | es_ES |
dc.description.references | Faraji, S., Zhong, D., & Dreuw, A. (2016). Characterization of the Intermediate in and Identification of the Repair Mechanism of (6- 4) Photolesions by Photolyases. Angewandte Chemie International Edition, 55(17), 5175-5178. doi:10.1002/anie.201511950 | es_ES |
dc.description.references | Faraji, S., Zhong, D., & Dreuw, A. (2016). Characterization of the Intermediate in and Identification of the Repair Mechanism of (6- 4) Photolesions by Photolyases. Angewandte Chemie, 128(17), 5261-5264. doi:10.1002/ange.201511950 | es_ES |
dc.description.references | Sancar, A. (2003). Structure and Function of DNA Photolyase and Cryptochrome Blue-Light Photoreceptors. Chemical Reviews, 103(6), 2203-2238. doi:10.1021/cr0204348 | es_ES |
dc.description.references | Yamamoto, J., Martin, R., Iwai, S., Plaza, P., & Brettel, K. (2013). Repair of the (6-4) Photoproduct by DNA Photolyase Requires Two Photons. Angewandte Chemie International Edition, 52(29), 7432-7436. doi:10.1002/anie.201301567 | es_ES |
dc.description.references | Yamamoto, J., Martin, R., Iwai, S., Plaza, P., & Brettel, K. (2013). Repair of the (6-4) Photoproduct by DNA Photolyase Requires Two Photons. Angewandte Chemie, 125(29), 7580-7584. doi:10.1002/ange.201301567 | es_ES |
dc.description.references | Scannell, M. P., Fenick, D. J., Yeh, S.-R., & Falvey, D. E. (1997). Model Studies of DNA Photorepair: Reduction Potentials of Thymine and Cytosine Cyclobutane Dimers Measured by Fluorescence Quenching. Journal of the American Chemical Society, 119(8), 1971-1977. doi:10.1021/ja963360o | es_ES |
dc.description.references | Yeh, S. R., & Falvey, D. E. (1992). Model studies of DNA photorepair: energetic requirements for the radical anion mechanism determined by fluorescence quenching. Journal of the American Chemical Society, 114(18), 7313-7314. doi:10.1021/ja00044a063 | es_ES |
dc.description.references | Pac, C., Ohtsuki, T., Shiota, Y., Yanagida, S., & Sakurai, H. (1986). Photochemical Reactions of Aromatic Compounds. XLII. Photosensitized Reactions of Some Selected Diarylcyclobutanes by Aromatic Nitriles and Chloranil. Implications of Charge-Transfer Contributions on Exciplex Reactivities. Bulletin of the Chemical Society of Japan, 59(4), 1133-1139. doi:10.1246/bcsj.59.1133 | es_ES |
dc.description.references | Boussicault, F., Krüger, O., Robert, M., & Wille, U. (2004). Dissociative electron transfer to and from pyrimidine cyclobutane dimers: An electrochemical study. Org. Biomol. Chem., 2(19), 2742-2750. doi:10.1039/b406923d | es_ES |
dc.description.references | Boussicault, F., & Robert, M. (2008). Electron Transfer in DNA and in DNA-Related Biological Processes. Electrochemical Insights. Chemical Reviews, 108(7), 2622-2645. doi:10.1021/cr0680787 | es_ES |
dc.description.references | Wenska, G., & Paszyc, S. (1990). Electron-acceptor-sensitized splitting of cyclobutane-type thymine dimers. Journal of Photochemistry and Photobiology B: Biology, 8(1), 27-37. doi:10.1016/1011-1344(90)85185-y | es_ES |
dc.description.references | Fenick, D. J., Carr, H. S., & Falvey, D. E. (1995). Synthesis and Photochemical Cleavage of Cis-Syn Pyrimidine Cyclobutane Dimer Analogs. The Journal of Organic Chemistry, 60(3), 624-631. doi:10.1021/jo00108a026 | es_ES |
dc.description.references | Pac, C., Miyamoto, I., Masaki, Y., Furusho, S., Yanagida, S., Ohno, T., & Yoshimura, A. (1990). CHLORANIL-PHOTOSENSITIZED MONOMERIZATION OF DIMETHYLTHYMINE CYCLOBUTANE DIMERS and EFFECT OF MAGNESIUM PERCHLORATE. Photochemistry and Photobiology, 52(5), 973-979. doi:10.1111/j.1751-1097.1990.tb01813.x | es_ES |
dc.description.references | Nguyen, K. V., & Burrows, C. J. (2011). A Prebiotic Role for 8-Oxoguanosine as a Flavin Mimic in Pyrimidine Dimer Photorepair. Journal of the American Chemical Society, 133(37), 14586-14589. doi:10.1021/ja2072252 | es_ES |
dc.description.references | Behrens, C., & Carell, T. (2003). Excess electron transfer in flavin-capped, thymine dimer-containing DNA hairpins. Chemical Communications, (14), 1632. doi:10.1039/b303805j | es_ES |
dc.description.references | Camp, J. R., Young, T., Hartman, R. F., & Rose, S. D. (1987). PHOTOSENSITIZATION OF PYRIMIDINE DIMER SPLITTING BY A COVALENTLY BOUND INDOLE. Photochemistry and Photobiology, 45(3), 365-370. doi:10.1111/j.1751-1097.1987.tb05388.x | es_ES |
dc.description.references | Francés-Monerris, A., Segarra-Martí, J., Merchán, M., & Roca-Sanjuán, D. (2015). Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV). The Journal of Chemical Physics, 143(21), 215101. doi:10.1063/1.4936574 | es_ES |
dc.description.references | González-Ramírez, I., Segarra-Martí, J., Serrano-Andrés, L., Merchán, M., Rubio, M., & Roca-Sanjuán, D. (2012). On the N1–H and N3–H Bond Dissociation in Uracil by Low Energy Electrons: A CASSCF/CASPT2 Study. Journal of Chemical Theory and Computation, 8(8), 2769-2776. doi:10.1021/ct300153f | es_ES |
dc.description.references | Roca-Sanjuán, D., Merchán, M., Serrano-Andrés, L., & Rubio, M. (2008). Ab initio determination of the electron affinities of DNA and RNA nucleobases. The Journal of Chemical Physics, 129(9), 095104. doi:10.1063/1.2958286 | es_ES |
dc.description.references | Durbeej, B., & Eriksson, L. A. (2000). Thermodynamics of the Photoenzymic Repair Mechanism Studied by Density Functional Theory. Journal of the American Chemical Society, 122(41), 10126-10132. doi:10.1021/ja000929j | es_ES |
dc.description.references | Aparici-Espert, I., Garcia-Lainez, G., Andreu, I., Miranda, M. A., & Lhiaubet-Vallet, V. (2018). Oxidatively Generated Lesions as Internal Photosensitizers for Pyrimidine Dimerization in DNA. ACS Chemical Biology, 13(3), 542-547. doi:10.1021/acschembio.7b01097 | es_ES |
dc.description.references | Pavlishchuk, V. V., & Addison, A. W. (2000). Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C. Inorganica Chimica Acta, 298(1), 97-102. doi:10.1016/s0020-1693(99)00407-7 | es_ES |
dc.description.references | Zhao, Y., & Truhlar, D. G. (2007). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1-3), 215-241. doi:10.1007/s00214-007-0310-x | es_ES |
dc.description.references | Gaussian 09 Revision D.01 M. J. Frisch G. W. Trucks H. B. Schlegel G. E. Scuseria M. A. Robb J. R. Cheeseman G. Scalmani V. Barone G. A. Petersson H. Nakatsuji X. Li M. Caricato A. Marenich J. Bloino R. Janesko R. Gomperts B. Menucci H. P. Hratchian J. V. Ortiz A. F. Izmaylov D. Sonnenberg F. Williams-Young F. Ding F. Lipparini F. Edigi J. Goings B. Peng A. Petrone T. Henderson D. Ranasinghe V. G. Zakrzewski J. Gao N. Rega W. Zheng W. Liang M. Hada M. Ehara K. Toyota R. Fukuda M. Hasegawa T. Ishida T. Nakajima Y. Honda O. Kitao H. Nakai T. Vreven K. Throssell M. J. J. A. J. E. Peralta F. Ogliaro M. Bearpark J. J. Heyd E. Brothers K. N. Kudin V. N. Staroverov T. Keith R. Kobayashi J. Normand K. Raghavachari A. Rendell J. C. Burant S. S. Iyengar J. Tomasi M. Cossi J. M. Millam M. Klene C. Adamo R. Cammi J. W. Ochterski R. L. Martin K. Morokuma O. Farkas J. B. Foresman D. J. Fox Wallingford CT 2013. | es_ES |
dc.description.references | Aranda, J., Francés-Monerris, A., Tuñón, I., & Roca-Sanjuán, D. (2017). Regioselectivity of the OH Radical Addition to Uracil in Nucleic Acids. A Theoretical Approach Based on QM/MM Simulations. Journal of Chemical Theory and Computation, 13(10), 5089-5096. doi:10.1021/acs.jctc.7b00610 | es_ES |
dc.description.references | Francés-Monerris, A., Merchán, M., & Roca-Sanjuán, D. (2014). Theoretical Study of the Hydroxyl Radical Addition to Uracil and Photochemistry of the Formed U6OH•Adduct. The Journal of Physical Chemistry B, 118(11), 2932-2939. doi:10.1021/jp412347k | es_ES |
dc.description.references | Francés-Monerris, A., Merchán, M., & Roca-Sanjuán, D. (2016). Mechanism of the OH Radical Addition to Adenine from Quantum-Chemistry Determinations of Reaction Paths and Spectroscopic Tracking of the Intermediates. The Journal of Organic Chemistry, 82(1), 276-288. doi:10.1021/acs.joc.6b02393 | es_ES |
dc.description.references | Isayev, O., Gorb, L., & Leszczynski, J. (2007). Theoretical calculations: Can Gibbs free energy for intermolecular complexes be predicted efficiently and accurately? Journal of Computational Chemistry, 28(9), 1598-1609. doi:10.1002/jcc.20696 | es_ES |
dc.description.references | Andersson, K., Malmqvist, P., & Roos, B. O. (1992). Second‐order perturbation theory with a complete active space self‐consistent field reference function. The Journal of Chemical Physics, 96(2), 1218-1226. doi:10.1063/1.462209 | es_ES |
dc.description.references | Roca-Sanjuán, D., Aquilante, F., & Lindh, R. (2011). Multiconfiguration second-order perturbation theory approach to strong electron correlation in chemistry and photochemistry. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(4), 585-603. doi:10.1002/wcms.97 | es_ES |
dc.description.references | Forsberg, N., & Malmqvist, P.-Å. (1997). Multiconfiguration perturbation theory with imaginary level shift. Chemical Physics Letters, 274(1-3), 196-204. doi:10.1016/s0009-2614(97)00669-6 | es_ES |
dc.description.references | Ghigo, G., Roos, B. O., & Malmqvist, P.-Å. (2004). A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chemical Physics Letters, 396(1-3), 142-149. doi:10.1016/j.cplett.2004.08.032 | es_ES |
dc.description.references | Roca-Sanjuán, D., Rubio, M., Merchán, M., & Serrano-Andrés, L. (2006). Ab initiodetermination of the ionization potentials of DNA and RNA nucleobases. The Journal of Chemical Physics, 125(8), 084302. doi:10.1063/1.2336217 | es_ES |
dc.description.references | Aquilante, F., Autschbach, J., Carlson, R. K., Chibotaru, L. F., Delcey, M. G., De Vico, L., … Lindh, R. (2015). Molcas8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. Journal of Computational Chemistry, 37(5), 506-541. doi:10.1002/jcc.24221 | es_ES |
dc.description.references | Widmark, P.-O., Persson, B. J., & Roos, B. O. (1991). Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. Theoretica Chimica Acta, 79(6), 419-432. doi:10.1007/bf01112569 | es_ES |