- -

Experimental and Theoretical Study on the Cycloreversion of a Nucleobase-Derived Azetidine by Photoinduced Electron Transfer

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental and Theoretical Study on the Cycloreversion of a Nucleobase-Derived Azetidine by Photoinduced Electron Transfer

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fraga-Timiraos, Ana Belén es_ES
dc.contributor.author Francés-Monerris, Antonio es_ES
dc.contributor.author Rodríguez Muñiz, Gemma María es_ES
dc.contributor.author Navarrete-Miguel, Miriam es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.contributor.author Roca Sanjuan, Daniel es_ES
dc.contributor.author Lhiaubet, Virginie Lyria es_ES
dc.date.accessioned 2020-09-12T03:35:12Z
dc.date.available 2020-09-12T03:35:12Z
dc.date.issued 2018-10-12 es_ES
dc.identifier.issn 0947-6539 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149958
dc.description.abstract [EN] Azetidines are interesting compounds in medicine and chemistry as bioactive scaffolds and synthetic intermediates. However, photochemical processes involved in the generation and fate of azetidine-derived radical ions have scarcely been reported. In this context, the photoreduction of this four-membered heterocycle might be relevant in connection with the DNA (6-4) photoproduct obtained from photolyase. Herein, a stable azabipyrimidinic azetidine (AZT(m)), obtained from cycloaddition between thymine and 6-azauracil units, is considered to be an interesting model of the proposed azetidine-like intermediate. Hence, its photoreduction and photo-oxidation are thoroughly investigated through a multifaceted approach, including spectroscopic, analytical, and electrochemical studies, complemented by CASPT2 and DFT calculations. Both injection and removal of an electron result in the formation of radical ions, which evolve towards repaired thymine and azauracil units. Whereas photoreduction energetics are similar to those of the cyclobutane thymine dimers, photo-oxidation is clearly more favorable in the azetidine. Ring opening occurs with relatively low activation barriers (< 13 kcal mol(-1)) and the process is clearly exergonic for photoreduction. In general, a good correlation has been observed between the experimental results and theoretical calculations, which has allowed a synergic understanding of the phenomenon. es_ES
dc.description.sponsorship The Spanish Government (CTQ2015-70164-P, CTQ2017-87054-C2-2-P, SVP-2013-068057 grants to A.B.F.-R. and RYC-2015-19234 grant to D.R.-S.) and the Valencia Regional Government (Prometeo/2017/075) are acknowledged for financial support. A.F.-M. is grateful to the Region Grand Est government (France) and the Universite de Lorraine for their financial support. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cycloaddition es_ES
dc.subject Density functional calculations es_ES
dc.subject Electron transfer es_ES
dc.subject Photochemistry es_ES
dc.subject Radicals es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Experimental and Theoretical Study on the Cycloreversion of a Nucleobase-Derived Azetidine by Photoinduced Electron Transfer es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.201803298 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87054-C2-2-P/ES/FOTOFISICA DE SISTEMAS ORGANICOS DE TRANSFERENCIA DE CARGA INNOVADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SVP-2013-068057/ES/SVP-2013-068057/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2015-19234/ES/RYC-2015-19234/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-70164-P/ES/LESIONES DEL ADN COMO FOTOSENSIBILIZADORES INTRINSECOS - CONCEPTO DE CABALLO DE TROYA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Fraga-Timiraos, AB.; Francés-Monerris, A.; Rodríguez Muñiz, GM.; Navarrete-Miguel, M.; Miranda Alonso, MÁ.; Roca Sanjuan, D.; Lhiaubet, VL. (2018). Experimental and Theoretical Study on the Cycloreversion of a Nucleobase-Derived Azetidine by Photoinduced Electron Transfer. Chemistry - A European Journal. 24(57):15346-15354. https://doi.org/10.1002/chem.201803298 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/chem.201803298 es_ES
dc.description.upvformatpinicio 15346 es_ES
dc.description.upvformatpfin 15354 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 57 es_ES
dc.identifier.pmid 30053323 es_ES
dc.relation.pasarela S\379636 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Université de Lorraine es_ES
dc.contributor.funder Conseil Régional Grand Est, Francia es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Antermite, D., Degennaro, L., & Luisi, R. (2017). Recent advances in the chemistry of metallated azetidines. Organic & Biomolecular Chemistry, 15(1), 34-50. doi:10.1039/c6ob01665k es_ES
dc.description.references Canu, N., Belin, P., Thai, R., Correia, I., Lequin, O., Seguin, J., … Gondry, M. (2018). Incorporation of Non-canonical Amino Acids into 2,5-Diketopiperazines by Cyclodipeptide Synthases. Angewandte Chemie International Edition, 57(12), 3118-3122. doi:10.1002/anie.201712536 es_ES
dc.description.references Canu, N., Belin, P., Thai, R., Correia, I., Lequin, O., Seguin, J., … Gondry, M. (2018). Incorporation of Non-canonical Amino Acids into 2,5-Diketopiperazines by Cyclodipeptide Synthases. Angewandte Chemie, 130(12), 3172-3176. doi:10.1002/ange.201712536 es_ES
dc.description.references Meyer, F. (2016). Trifluoromethyl nitrogen heterocycles: synthetic aspects and potential biological targets. Chemical Communications, 52(15), 3077-3094. doi:10.1039/c5cc09414c es_ES
dc.description.references Brandi, A., Cicchi, S., & Cordero, F. M. (2008). Novel Syntheses of Azetidines and Azetidinones. Chemical Reviews, 108(9), 3988-4035. doi:10.1021/cr800325e es_ES
dc.description.references Carreira, E. M., & Fessard, T. C. (2014). Four-Membered Ring-Containing Spirocycles: Synthetic Strategies and Opportunities. Chemical Reviews, 114(16), 8257-8322. doi:10.1021/cr500127b es_ES
dc.description.references Lopchuk, J. M., Fjelbye, K., Kawamata, Y., Malins, L. R., Pan, C.-M., Gianatassio, R., … Baran, P. S. (2017). Strain-Release Heteroatom Functionalization: Development, Scope, and Stereospecificity. Journal of the American Chemical Society, 139(8), 3209-3226. doi:10.1021/jacs.6b13229 es_ES
dc.description.references Hameed, A., Javed, S., Noreen, R., Huma, T., Iqbal, S., Umbreen, H., … Farooq, T. (2017). Facile and Green Synthesis of Saturated Cyclic Amines. Molecules, 22(10), 1691. doi:10.3390/molecules22101691 es_ES
dc.description.references Mehra, V., Lumb, I., Anand, A., & Kumar, V. (2017). Recent advances in synthetic facets of immensely reactive azetidines. RSC Adv., 7(72), 45763-45783. doi:10.1039/c7ra08884a es_ES
dc.description.references Kumarasamy, E., Kandappa, S. K., Raghunathan, R., Jockusch, S., & Sivaguru, J. (2017). Realizing an Aza Paternò-Büchi Reaction. Angewandte Chemie International Edition, 56(25), 7056-7061. doi:10.1002/anie.201702273 es_ES
dc.description.references Kumarasamy, E., Kandappa, S. K., Raghunathan, R., Jockusch, S., & Sivaguru, J. (2017). Realizing an Aza Paternò-Büchi Reaction. Angewandte Chemie, 129(25), 7162-7167. doi:10.1002/ange.201702273 es_ES
dc.description.references Schmid, S. C., Guzei, I. A., & Schomaker, J. M. (2017). A Stereoselective [3+1] Ring Expansion for the Synthesis of Highly Substituted Methylene Azetidines. Angewandte Chemie International Edition, 56(40), 12229-12233. doi:10.1002/anie.201705202 es_ES
dc.description.references Schmid, S. C., Guzei, I. A., & Schomaker, J. M. (2017). A Stereoselective [3+1] Ring Expansion for the Synthesis of Highly Substituted Methylene Azetidines. Angewandte Chemie, 129(40), 12397-12401. doi:10.1002/ange.201705202 es_ES
dc.description.references Diethelm, S., & Carreira, E. M. (2015). Total Synthesis of Gelsemoxonine through a Spirocyclopropane Isoxazolidine Ring Contraction. Journal of the American Chemical Society, 137(18), 6084-6096. doi:10.1021/jacs.5b02574 es_ES
dc.description.references Glawar, A. F. G., Jenkinson, S. F., Thompson, A. L., Nakagawa, S., Kato, A., Butters, T. D., & Fleet, G. W. J. (2013). 3-Hydroxyazetidine Carboxylic Acids: Non-Proteinogenic Amino Acids for Medicinal Chemists. ChemMedChem, 8(4), 658-666. doi:10.1002/cmdc.201200541 es_ES
dc.description.references Kagiyama, I., Kato, H., Nehira, T., Frisvad, J. C., Sherman, D. H., Williams, R. M., & Tsukamoto, S. (2015). Taichunamides: Prenylated Indole Alkaloids from Aspergillus taichungensis (IBT 19404). Angewandte Chemie International Edition, 55(3), 1128-1132. doi:10.1002/anie.201509462 es_ES
dc.description.references Kagiyama, I., Kato, H., Nehira, T., Frisvad, J. C., Sherman, D. H., Williams, R. M., & Tsukamoto, S. (2015). Taichunamides: Prenylated Indole Alkaloids from Aspergillus taichungensis (IBT 19404). Angewandte Chemie, 128(3), 1140-1144. doi:10.1002/ange.201509462 es_ES
dc.description.references Kato, N., Comer, E., Sakata-Kato, T., Sharma, A., Sharma, M., Maetani, M., … Corey, V. (2016). Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature, 538(7625), 344-349. doi:10.1038/nature19804 es_ES
dc.description.references Wang, X., Liu, C., Zeng, X., Wang, X., Wang, X., & Hu, Y. (2017). Ruthenium-Catalyzed Synthesis of Fused Tricyclic 1H-2,3-Dihydropyrimido[1,2-a]quinolines in One Step. Organic Letters, 19(13), 3378-3381. doi:10.1021/acs.orglett.7b01330 es_ES
dc.description.references Sarazen, M. L., & Jones, C. W. (2017). Insights into Azetidine Polymerization for the Preparation of Poly(propylenimine)-Based CO2 Adsorbents. Macromolecules, 50(23), 9135-9143. doi:10.1021/acs.macromol.7b02402 es_ES
dc.description.references Schnitzer, T., & Wennemers, H. (2017). Influence of theTrans/CisConformer Ratio on the Stereoselectivity of Peptidic Catalysts. Journal of the American Chemical Society, 139(43), 15356-15362. doi:10.1021/jacs.7b06194 es_ES
dc.description.references Kaiser, A., Mayer, K. K., Sellmer, A., & Wiegrebe, W. (2003). Electron Impact Induced Fragmentation of Aromatic Alkoxyimines II [5]. Formation and Transformation of Heterocyclic Radical Cations in the Gas Phase a. Monatshefte f�r Chemie / Chemical Monthly, 134(3), 343-354. doi:10.1007/s00706-002-0485-8 es_ES
dc.description.references Andreu, I., Delgado, J., Espinós, A., Pérez-Ruiz, R., Jiménez, M. C., & Miranda, M. A. (2008). Cycloreversion of Azetidines via Oxidative Electron Transfer. Steady-State and Time-Resolved Studies. Organic Letters, 10(22), 5207-5210. doi:10.1021/ol802181u es_ES
dc.description.references Fraga-Timiraos, A. B., Lhiaubet-Vallet, V., & Miranda, M. A. (2016). Repair of a Dimeric Azetidine Related to the Thymine-Cytosine (6- 4) Photoproduct by Electron Transfer Photoreduction. Angewandte Chemie International Edition, 55(20), 6037-6040. doi:10.1002/anie.201601475 es_ES
dc.description.references Fraga-Timiraos, A. B., Lhiaubet-Vallet, V., & Miranda, M. A. (2016). Repair of a Dimeric Azetidine Related to the Thymine-Cytosine (6- 4) Photoproduct by Electron Transfer Photoreduction. Angewandte Chemie, 128(20), 6141-6144. doi:10.1002/ange.201601475 es_ES
dc.description.references Fraga-Timiraos, A., Rodríguez-Muñiz, G., Peiro-Penalba, V., Miranda, M., & Lhiaubet-Vallet, V. (2016). Stereoselective Fluorescence Quenching in the Electron Transfer Photooxidation of Nucleobase-Related Azetidines by Cyanoaromatics. Molecules, 21(12), 1683. doi:10.3390/molecules21121683 es_ES
dc.description.references Pérez-Ruiz, R., Jiménez, M. C., & Miranda, M. A. (2014). Hetero-cycloreversions Mediated by Photoinduced Electron Transfer. Accounts of Chemical Research, 47(4), 1359-1368. doi:10.1021/ar4003224 es_ES
dc.description.references Leo, E. A., Domingo, L. R., Miranda, M. A., & Tormos, R. (2006). Photogeneration and Reactivity of 1,n-Diphenyl-1,n-azabiradicals. The Journal of Organic Chemistry, 71(12), 4439-4444. doi:10.1021/jo0601967 es_ES
dc.description.references Cichon, M. K., Arnold, S., & Carell, T. (2002). A (6-4) Photolyase Model: Repair of DNA (6-4) Lesions Requires a Reduced and Deprotonated Flavin This work was supported by the Volkswagen Foundation, the Fonds der Chemischen Industry, and the Bundesministerium für Bildung und Forschung (BMBF: Neue Medien in der Bildung). Angewandte Chemie International Edition, 41(5), 767. doi:10.1002/1521-3773(20020301)41:5<767::aid-anie767>3.0.co;2-b es_ES
dc.description.references Cichon, M. K., Arnold, S., & Carell, T. (2002). A (6-4) Photolyase Model: Repair of DNA (6-4) Lesions Requires a Reduced and Deprotonated Flavin. Angewandte Chemie, 114(5), 793-796. doi:10.1002/1521-3757(20020301)114:5<793::aid-ange793>3.0.co;2-w es_ES
dc.description.references Prakash, G., & Falvey, D. E. (1995). Model studies of the (6-4) photoproduct DNA photolyase: Synthesis and photosensitized splitting of a thymine-5,6-oxetane. Journal of the American Chemical Society, 117(45), 11375-11376. doi:10.1021/ja00150a050 es_ES
dc.description.references Joseph, A., & Falvey, D. E. (2002). Photoinduced electron transfer cleavage of oxetane adducts of uracil and cytosine. Photochemical & Photobiological Sciences, 1(9), 632-635. doi:10.1039/b201740g es_ES
dc.description.references Trzcionka, J., Lhiaubet-Vallet, V., Paris, C., Belmadoui, N., Climent, M. J., & Miranda, M. A. (2007). Model Studies on a Carprofen Derivative as Dual Photosensitizer for Thymine Dimerization and (6–4) Photoproduct Repair. ChemBioChem, 8(4), 402-407. doi:10.1002/cbic.200600394 es_ES
dc.description.references Wu, Q.-Q., & Song, Q.-H. (2010). Photosensitized Splitting of Thymine Dimer or Oxetane Unit by a CovalentlyN-Linked Carbazole via Electron Transfer in Different Marcus Regions. The Journal of Physical Chemistry B, 114(30), 9827-9832. doi:10.1021/jp1035579 es_ES
dc.description.references Pérez-Ruiz, R., Miranda, M. A., Alle, R., Meerholz, K., & Griesbeck, A. G. (2006). An efficient carbonyl-alkene metathesis of bicyclic oxetanes: photoinduced electron transfer reduction of the Paternò–Büchi adducts from 2,3-dihydrofuran and aromatic aldehydes. Photochem. Photobiol. Sci., 5(1), 51-55. doi:10.1039/b513875b es_ES
dc.description.references Izquierdo, M. A., Domingo, L. R., & Miranda, M. A. (2005). Theoretical Calculations on the Cycloreversion of Oxetane Radical Cations. The Journal of Physical Chemistry A, 109(11), 2602-2607. doi:10.1021/jp045832o es_ES
dc.description.references Miranda, M. A., & Izquierdo, M. A. (2003). Chemical and transient spectroscopic evidence for C2–C3 cleavage of 2,3-diaryloxetane radical cations. Chemical Communications, (3), 364-365. doi:10.1039/b209500a es_ES
dc.description.references Miranda, M. A., & Izquierdo, M. A. (2002). Stepwise Cycloreversion of Oxetane Radical Cations with Initial C−O Bond Cleavage. Journal of the American Chemical Society, 124(23), 6532-6533. doi:10.1021/ja025697y es_ES
dc.description.references Pérez-Ruiz, R., Sáez, J. A., Domingo, L. R., Jiménez, M. C., & Miranda, M. A. (2012). Oxetane Ring Enlargement through Nucleophilic Trapping of Radical Cations by Acetonitrile. Organic Letters, 14(22), 5700-5703. doi:10.1021/ol302717s es_ES
dc.description.references Glas, A. F., Schneider, S., Maul, M. J., Hennecke, U., & Carell, T. (2009). Crystal Structure of the T(6-4)C Lesion in Complex with a (6-4) DNA Photolyase and Repair of UV-Induced (6-4) and Dewar Photolesions. Chemistry - A European Journal, 15(40), 10387-10396. doi:10.1002/chem.200901004 es_ES
dc.description.references Maul, M. J., Barends, T. R. M., Glas, A. F., Cryle, M. J., Domratcheva, T., Schneider, S., … Carell, T. (2008). Crystal Structure and Mechanism of a DNA (6-4) Photolyase. Angewandte Chemie International Edition, 47(52), 10076-10080. doi:10.1002/anie.200804268 es_ES
dc.description.references Maul, M. J., Barends, T. R. M., Glas, A. F., Cryle, M. J., Domratcheva, T., Schneider, S., … Carell, T. (2008). Röntgenkristallstruktur und Mechanismus der DNA-(6-4)-Photolyase. Angewandte Chemie, 120(52), 10230-10234. doi:10.1002/ange.200804268 es_ES
dc.description.references Faraji, S., & Dreuw, A. (2017). Insights into Light-driven DNA Repair by Photolyases: Challenges and Opportunities for Electronic Structure Theory. Photochemistry and Photobiology, 93(1), 37-50. doi:10.1111/php.12679 es_ES
dc.description.references Yamamoto, J., Plaza, P., & Brettel, K. (2017). Repair of (6-4) Lesions in DNA by (6-4) Photolyase: 20 Years of Quest for the Photoreaction Mechanism. Photochemistry and Photobiology, 93(1), 51-66. doi:10.1111/php.12696 es_ES
dc.description.references Zhang, M., Wang, L., & Zhong, D. (2017). Photolyase: Dynamics and Mechanisms of Repair of Sun-Induced DNA Damage. Photochemistry and Photobiology, 93(1), 78-92. doi:10.1111/php.12695 es_ES
dc.description.references Faraji, S., Zhong, D., & Dreuw, A. (2016). Characterization of the Intermediate in and Identification of the Repair Mechanism of (6- 4) Photolesions by Photolyases. Angewandte Chemie International Edition, 55(17), 5175-5178. doi:10.1002/anie.201511950 es_ES
dc.description.references Faraji, S., Zhong, D., & Dreuw, A. (2016). Characterization of the Intermediate in and Identification of the Repair Mechanism of (6- 4) Photolesions by Photolyases. Angewandte Chemie, 128(17), 5261-5264. doi:10.1002/ange.201511950 es_ES
dc.description.references Sancar, A. (2003). Structure and Function of DNA Photolyase and Cryptochrome Blue-Light Photoreceptors. Chemical Reviews, 103(6), 2203-2238. doi:10.1021/cr0204348 es_ES
dc.description.references Yamamoto, J., Martin, R., Iwai, S., Plaza, P., & Brettel, K. (2013). Repair of the (6-4) Photoproduct by DNA Photolyase Requires Two Photons. Angewandte Chemie International Edition, 52(29), 7432-7436. doi:10.1002/anie.201301567 es_ES
dc.description.references Yamamoto, J., Martin, R., Iwai, S., Plaza, P., & Brettel, K. (2013). Repair of the (6-4) Photoproduct by DNA Photolyase Requires Two Photons. Angewandte Chemie, 125(29), 7580-7584. doi:10.1002/ange.201301567 es_ES
dc.description.references Scannell, M. P., Fenick, D. J., Yeh, S.-R., & Falvey, D. E. (1997). Model Studies of DNA Photorepair:  Reduction Potentials of Thymine and Cytosine Cyclobutane Dimers Measured by Fluorescence Quenching. Journal of the American Chemical Society, 119(8), 1971-1977. doi:10.1021/ja963360o es_ES
dc.description.references Yeh, S. R., & Falvey, D. E. (1992). Model studies of DNA photorepair: energetic requirements for the radical anion mechanism determined by fluorescence quenching. Journal of the American Chemical Society, 114(18), 7313-7314. doi:10.1021/ja00044a063 es_ES
dc.description.references Pac, C., Ohtsuki, T., Shiota, Y., Yanagida, S., & Sakurai, H. (1986). Photochemical Reactions of Aromatic Compounds. XLII. Photosensitized Reactions of Some Selected Diarylcyclobutanes by Aromatic Nitriles and Chloranil. Implications of Charge-Transfer Contributions on Exciplex Reactivities. Bulletin of the Chemical Society of Japan, 59(4), 1133-1139. doi:10.1246/bcsj.59.1133 es_ES
dc.description.references Boussicault, F., Krüger, O., Robert, M., & Wille, U. (2004). Dissociative electron transfer to and from pyrimidine cyclobutane dimers: An electrochemical study. Org. Biomol. Chem., 2(19), 2742-2750. doi:10.1039/b406923d es_ES
dc.description.references Boussicault, F., & Robert, M. (2008). Electron Transfer in DNA and in DNA-Related Biological Processes. Electrochemical Insights. Chemical Reviews, 108(7), 2622-2645. doi:10.1021/cr0680787 es_ES
dc.description.references Wenska, G., & Paszyc, S. (1990). Electron-acceptor-sensitized splitting of cyclobutane-type thymine dimers. Journal of Photochemistry and Photobiology B: Biology, 8(1), 27-37. doi:10.1016/1011-1344(90)85185-y es_ES
dc.description.references Fenick, D. J., Carr, H. S., & Falvey, D. E. (1995). Synthesis and Photochemical Cleavage of Cis-Syn Pyrimidine Cyclobutane Dimer Analogs. The Journal of Organic Chemistry, 60(3), 624-631. doi:10.1021/jo00108a026 es_ES
dc.description.references Pac, C., Miyamoto, I., Masaki, Y., Furusho, S., Yanagida, S., Ohno, T., & Yoshimura, A. (1990). CHLORANIL-PHOTOSENSITIZED MONOMERIZATION OF DIMETHYLTHYMINE CYCLOBUTANE DIMERS and EFFECT OF MAGNESIUM PERCHLORATE. Photochemistry and Photobiology, 52(5), 973-979. doi:10.1111/j.1751-1097.1990.tb01813.x es_ES
dc.description.references Nguyen, K. V., & Burrows, C. J. (2011). A Prebiotic Role for 8-Oxoguanosine as a Flavin Mimic in Pyrimidine Dimer Photorepair. Journal of the American Chemical Society, 133(37), 14586-14589. doi:10.1021/ja2072252 es_ES
dc.description.references Behrens, C., & Carell, T. (2003). Excess electron transfer in flavin-capped, thymine dimer-containing DNA hairpins. Chemical Communications, (14), 1632. doi:10.1039/b303805j es_ES
dc.description.references Camp, J. R., Young, T., Hartman, R. F., & Rose, S. D. (1987). PHOTOSENSITIZATION OF PYRIMIDINE DIMER SPLITTING BY A COVALENTLY BOUND INDOLE. Photochemistry and Photobiology, 45(3), 365-370. doi:10.1111/j.1751-1097.1987.tb05388.x es_ES
dc.description.references Francés-Monerris, A., Segarra-Martí, J., Merchán, M., & Roca-Sanjuán, D. (2015). Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV). The Journal of Chemical Physics, 143(21), 215101. doi:10.1063/1.4936574 es_ES
dc.description.references González-Ramírez, I., Segarra-Martí, J., Serrano-Andrés, L., Merchán, M., Rubio, M., & Roca-Sanjuán, D. (2012). On the N1–H and N3–H Bond Dissociation in Uracil by Low Energy Electrons: A CASSCF/CASPT2 Study. Journal of Chemical Theory and Computation, 8(8), 2769-2776. doi:10.1021/ct300153f es_ES
dc.description.references Roca-Sanjuán, D., Merchán, M., Serrano-Andrés, L., & Rubio, M. (2008). Ab initio determination of the electron affinities of DNA and RNA nucleobases. The Journal of Chemical Physics, 129(9), 095104. doi:10.1063/1.2958286 es_ES
dc.description.references Durbeej, B., & Eriksson, L. A. (2000). Thermodynamics of the Photoenzymic Repair Mechanism Studied by Density Functional Theory. Journal of the American Chemical Society, 122(41), 10126-10132. doi:10.1021/ja000929j es_ES
dc.description.references Aparici-Espert, I., Garcia-Lainez, G., Andreu, I., Miranda, M. A., & Lhiaubet-Vallet, V. (2018). Oxidatively Generated Lesions as Internal Photosensitizers for Pyrimidine Dimerization in DNA. ACS Chemical Biology, 13(3), 542-547. doi:10.1021/acschembio.7b01097 es_ES
dc.description.references Pavlishchuk, V. V., & Addison, A. W. (2000). Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C. Inorganica Chimica Acta, 298(1), 97-102. doi:10.1016/s0020-1693(99)00407-7 es_ES
dc.description.references Zhao, Y., & Truhlar, D. G. (2007). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1-3), 215-241. doi:10.1007/s00214-007-0310-x es_ES
dc.description.references Gaussian 09 Revision D.01 M. J. Frisch G. W. Trucks H. B. Schlegel G. E. Scuseria M. A. Robb J. R. Cheeseman G. Scalmani V. Barone G. A. Petersson H. Nakatsuji X. Li M. Caricato A. Marenich J. Bloino R. Janesko R. Gomperts B. Menucci H. P. Hratchian J. V. Ortiz A. F. Izmaylov D. Sonnenberg F. Williams-Young F. Ding F. Lipparini F. Edigi J. Goings B. Peng A. Petrone T. Henderson D. Ranasinghe V. G. Zakrzewski J. Gao N. Rega W. Zheng W. Liang M. Hada M. Ehara K. Toyota R. Fukuda M. Hasegawa T. Ishida T. Nakajima Y. Honda O. Kitao H. Nakai T. Vreven K. Throssell M. J. J. A. J. E. Peralta F. Ogliaro M. Bearpark J. J. Heyd E. Brothers K. N. Kudin V. N. Staroverov T. Keith R. Kobayashi J. Normand K. Raghavachari A. Rendell J. C. Burant S. S. Iyengar J. Tomasi M. Cossi J. M. Millam M. Klene C. Adamo R. Cammi J. W. Ochterski R. L. Martin K. Morokuma O. Farkas J. B. Foresman D. J. Fox Wallingford CT 2013. es_ES
dc.description.references Aranda, J., Francés-Monerris, A., Tuñón, I., & Roca-Sanjuán, D. (2017). Regioselectivity of the OH Radical Addition to Uracil in Nucleic Acids. A Theoretical Approach Based on QM/MM Simulations. Journal of Chemical Theory and Computation, 13(10), 5089-5096. doi:10.1021/acs.jctc.7b00610 es_ES
dc.description.references Francés-Monerris, A., Merchán, M., & Roca-Sanjuán, D. (2014). Theoretical Study of the Hydroxyl Radical Addition to Uracil and Photochemistry of the Formed U6OH•Adduct. The Journal of Physical Chemistry B, 118(11), 2932-2939. doi:10.1021/jp412347k es_ES
dc.description.references Francés-Monerris, A., Merchán, M., & Roca-Sanjuán, D. (2016). Mechanism of the OH Radical Addition to Adenine from Quantum-Chemistry Determinations of Reaction Paths and Spectroscopic Tracking of the Intermediates. The Journal of Organic Chemistry, 82(1), 276-288. doi:10.1021/acs.joc.6b02393 es_ES
dc.description.references Isayev, O., Gorb, L., & Leszczynski, J. (2007). Theoretical calculations: Can Gibbs free energy for intermolecular complexes be predicted efficiently and accurately? Journal of Computational Chemistry, 28(9), 1598-1609. doi:10.1002/jcc.20696 es_ES
dc.description.references Andersson, K., Malmqvist, P., & Roos, B. O. (1992). Second‐order perturbation theory with a complete active space self‐consistent field reference function. The Journal of Chemical Physics, 96(2), 1218-1226. doi:10.1063/1.462209 es_ES
dc.description.references Roca-Sanjuán, D., Aquilante, F., & Lindh, R. (2011). Multiconfiguration second-order perturbation theory approach to strong electron correlation in chemistry and photochemistry. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(4), 585-603. doi:10.1002/wcms.97 es_ES
dc.description.references Forsberg, N., & Malmqvist, P.-Å. (1997). Multiconfiguration perturbation theory with imaginary level shift. Chemical Physics Letters, 274(1-3), 196-204. doi:10.1016/s0009-2614(97)00669-6 es_ES
dc.description.references Ghigo, G., Roos, B. O., & Malmqvist, P.-Å. (2004). A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chemical Physics Letters, 396(1-3), 142-149. doi:10.1016/j.cplett.2004.08.032 es_ES
dc.description.references Roca-Sanjuán, D., Rubio, M., Merchán, M., & Serrano-Andrés, L. (2006). Ab initiodetermination of the ionization potentials of DNA and RNA nucleobases. The Journal of Chemical Physics, 125(8), 084302. doi:10.1063/1.2336217 es_ES
dc.description.references Aquilante, F., Autschbach, J., Carlson, R. K., Chibotaru, L. F., Delcey, M. G., De Vico, L., … Lindh, R. (2015). Molcas8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. Journal of Computational Chemistry, 37(5), 506-541. doi:10.1002/jcc.24221 es_ES
dc.description.references Widmark, P.-O., Persson, B. J., & Roos, B. O. (1991). Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. Theoretica Chimica Acta, 79(6), 419-432. doi:10.1007/bf01112569 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem