- -

Genome Mutational and Transcriptional Hotspots Are Traps for Duplicated Genes and Sources of Adaptations

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Genome Mutational and Transcriptional Hotspots Are Traps for Duplicated Genes and Sources of Adaptations

Show full item record

Fares Riaño, MA.; Sabater-Muñoz, B.; Toft, C. (2017). Genome Mutational and Transcriptional Hotspots Are Traps for Duplicated Genes and Sources of Adaptations. Genome Biology and Evolution. 9(5):1229-1240. https://doi.org/10.1093/gbe/evx085

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/149960

Files in this item

Item Metadata

Title: Genome Mutational and Transcriptional Hotspots Are Traps for Duplicated Genes and Sources of Adaptations
Author: Fares Riaño, Mario Ali Sabater-Muñoz, B. Toft, C.
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
[EN] Gene duplication generates new genetic material, which has been shown to lead to major innovations in unicellular and multicellular organisms. A whole-genome duplication occurred in the ancestor of Saccharomyces yeast ...[+]
Subjects: Gene duplication , Mutational genome hotspots , Expression genome hotspots , Environmental stress , Phenotypic plasticity , Adaptations , Genetic redundancy
Copyrigths: Reconocimiento - No comercial (by-nc)
Source:
Genome Biology and Evolution. (issn: 1759-6653 )
DOI: 10.1093/gbe/evx085
Publisher:
Oxford University Press
Publisher version: https://doi.org/10.1093/gbe/evx085
Project ID:
info:eu-repo/grantAgreement/MINECO//BFU2015-66073-P/ES/CARACTERIZANDO LOS MECANISMOS DE INNOVACION POR DUPLICACION GENICA/
info:eu-repo/grantAgreement/GVA//ACOMP%2F2015%2F026/
info:eu-repo/grantAgreement/MINECO//JCI-2012-14056/ES/JCI-2012-14056/
Thanks:
This study was supported by a grant (reference: FEDER-BFU2015-66073-P) from the Spanish Ministerio de Economia y Competitividad-FEDER and a grant (reference: ACOMP/2015/026) from the local government Conselleria de Educacion ...[+]
Type: Artículo

References

Agier, N., & Fischer, G. (2011). The Mutational Profile of the Yeast Genome Is Shaped by Replication. Molecular Biology and Evolution, 29(3), 905-913. doi:10.1093/molbev/msr280

Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389

Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 11(10). doi:10.1186/gb-2010-11-10-r106 [+]
Agier, N., & Fischer, G. (2011). The Mutational Profile of the Yeast Genome Is Shaped by Replication. Molecular Biology and Evolution, 29(3), 905-913. doi:10.1093/molbev/msr280

Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389

Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 11(10). doi:10.1186/gb-2010-11-10-r106

Berry, D. B., & Gasch, A. P. (2008). Stress-activated Genomic Expression Changes Serve a Preparative Role for Impending Stress in Yeast. Molecular Biology of the Cell, 19(11), 4580-4587. doi:10.1091/mbc.e07-07-0680

Birchler, J. A., Bhadra, U., Bhadra, M. P., & Auger, D. L. (2001). Dosage-Dependent Gene Regulation in Multicellular Eukaryotes: Implications for Dosage Compensation, Aneuploid Syndromes, and Quantitative Traits. Developmental Biology, 234(2), 275-288. doi:10.1006/dbio.2001.0262

Birchler, J. A., Riddle, N. C., Auger, D. L., & Veitia, R. A. (2005). Dosage balance in gene regulation: biological implications. Trends in Genetics, 21(4), 219-226. doi:10.1016/j.tig.2005.02.010

Birchler, J. A., & Veitia, R. A. (2012). Gene balance hypothesis: Connecting issues of dosage sensitivity across biological disciplines. Proceedings of the National Academy of Sciences, 109(37), 14746-14753. doi:10.1073/pnas.1207726109

Bro, C., Regenberg, B., Lagniel, G., Labarre, J., Montero-Lomelí, M., & Nielsen, J. (2003). Transcriptional, Proteomic, and Metabolic Responses to Lithium in Galactose-grown Yeast Cells. Journal of Biological Chemistry, 278(34), 32141-32149. doi:10.1074/jbc.m304478200

Byrne, K. P. (2005). The Yeast Gene Order Browser: Combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Research, 15(10), 1456-1461. doi:10.1101/gr.3672305

Carretero-Paulet, L., & Fares, M. A. (2012). Evolutionary Dynamics and Functional Specialization of Plant Paralogs Formed by Whole and Small-Scale Genome Duplications. Molecular Biology and Evolution, 29(11), 3541-3551. doi:10.1093/molbev/mss162

Casamayor, A., Serrano, R., Platara, M., Casado, C., Ruiz, A., & Ariño, J. (2012). The role of the Snf1 kinase in the adaptive response of Saccharomyces cerevisiae to alkaline pH stress. Biochemical Journal, 444(1), 39-49. doi:10.1042/bj20112099

Chuang, J. H., & Li, H. (2004). Functional Bias and Spatial Organization of Genes in Mutational Hot and Cold Regions in the Human Genome. PLoS Biology, 2(2), e29. doi:10.1371/journal.pbio.0020029

Clark, A. G. (1994). Invasion and maintenance of a gene duplication. Proceedings of the National Academy of Sciences, 91(8), 2950-2954. doi:10.1073/pnas.91.8.2950

Conant, G. C., & Wolfe, K. H. (2008). Turning a hobby into a job: How duplicated genes find new functions. Nature Reviews Genetics, 9(12), 938-950. doi:10.1038/nrg2482

Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E. D., Sevier, C. S., … Mostafavi, S. (2010). The Genetic Landscape of a Cell. Science, 327(5964), 425-431. doi:10.1126/science.1180823

Deatherage, D. E., & Barrick, J. E. (2014). Identification of Mutations in Laboratory-Evolved Microbes from Next-Generation Sequencing Data Using breseq. Engineering and Analyzing Multicellular Systems, 165-188. doi:10.1007/978-1-4939-0554-6_12

Fares, M. A. (2015). The origins of mutational robustness. Trends in Genetics, 31(7), 373-381. doi:10.1016/j.tig.2015.04.008

Fares, M. A., Keane, O. M., Toft, C., Carretero-Paulet, L., & Jones, G. W. (2013). The Roles of Whole-Genome and Small-Scale Duplications in the Functional Specialization of Saccharomyces cerevisiae Genes. PLoS Genetics, 9(1), e1003176. doi:10.1371/journal.pgen.1003176

Freeling, M. (2006). Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Research, 16(7), 805-814. doi:10.1101/gr.3681406

García-Rodríguez, N., Díaz de la Loza, M. del C., Andreson, B., Monje-Casas, F., Rothstein, R., & Wellinger, R. E. (2012). Impaired Manganese Metabolism Causes Mitotic Misregulation. Journal of Biological Chemistry, 287(22), 18717-18729. doi:10.1074/jbc.m112.358309

Gemayel, R., Vinces, M. D., Legendre, M., & Verstrepen, K. J. (2010). Variable Tandem Repeats Accelerate Evolution of Coding and Regulatory Sequences. Annual Review of Genetics, 44(1), 445-477. doi:10.1146/annurev-genet-072610-155046

Gout, J.-F., Duret, L., & Kahn, D. (2009). Differential Retention of Metabolic Genes Following Whole-Genome Duplication. Molecular Biology and Evolution, 26(5), 1067-1072. doi:10.1093/molbev/msp026

Gout, J.-F., Kahn, D., & Duret, L. (2010). The Relationship among Gene Expression, the Evolution of Gene Dosage, and the Rate of Protein Evolution. PLoS Genetics, 6(5), e1000944. doi:10.1371/journal.pgen.1000944

Gout, J.-F., & Lynch, M. (2015). Maintenance and Loss of Duplicated Genes by Dosage Subfunctionalization. Molecular Biology and Evolution, 32(8), 2141-2148. doi:10.1093/molbev/msv095

Guan, Y., Dunham, M. J., & Troyanskaya, O. G. (2006). Functional Analysis of Gene Duplications inSaccharomyces cerevisiae. Genetics, 175(2), 933-943. doi:10.1534/genetics.106.064329

Ibba, M. (1999). Quality Control Mechanisms During Translation. Science, 286(5446), 1893-1897. doi:10.1126/science.286.5446.1893

Jansen, M. L. A., Diderich, J. A., Mashego, M., Hassane, A., de Winde, J. H., Daran-Lapujade, P., & Pronk, J. T. (2005). Prolonged selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae causes a partial loss of glycolytic capacity. Microbiology, 151(5), 1657-1669. doi:10.1099/mic.0.27577-0

Kafri, R., Bar-Even, A., & Pilpel, Y. (2005). Transcription control reprogramming in genetic backup circuits. Nature Genetics, 37(3), 295-299. doi:10.1038/ng1523

Keane, O. M., Toft, C., Carretero-Paulet, L., Jones, G. W., & Fares, M. A. (2014). Preservation of genetic and regulatory robustness in ancient gene duplicates ofSaccharomyces cerevisiae. Genome Research, 24(11), 1830-1841. doi:10.1101/gr.176792.114

Kimura, M., & Takahata, N. (1983). Selective constraint in protein polymorphism: Study of the effectively neutral mutation model by using an improved pseudosampling method. Proceedings of the National Academy of Sciences, 80(4), 1048-1052. doi:10.1073/pnas.80.4.1048

Lang, G. I., & Murray, A. W. (2011). Mutation Rates across Budding Yeast Chromosome VI Are Correlated with Replication Timing. Genome Biology and Evolution, 3, 799-811. doi:10.1093/gbe/evr054

LaRiviere, F. J. (2001). Uniform Binding of Aminoacyl-tRNAs to Elongation Factor Tu by Thermodynamic Compensation. Science, 294(5540), 165-168. doi:10.1126/science.1064242

Liti, G., Carter, D. M., Moses, A. M., Warringer, J., Parts, L., James, S. A., … Louis, E. J. (2009). Population genomics of domestic and wild yeasts. Nature, 458(7236), 337-341. doi:10.1038/nature07743

Lohse, M., Bolger, A. M., Nagel, A., Fernie, A. R., Lunn, J. E., Stitt, M., & Usadel, B. (2012). RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Research, 40(W1), W622-W627. doi:10.1093/nar/gks540

Makino, T., McLysaght, A., & Kawata, M. (2013). Genome-wide deserts for copy number variation in vertebrates. Nature Communications, 4(1). doi:10.1038/ncomms3283

Marcet-Houben, M., & Gabaldón, T. (2015). Beyond the Whole-Genome Duplication: Phylogenetic Evidence for an Ancient Interspecies Hybridization in the Baker’s Yeast Lineage. PLOS Biology, 13(8), e1002220. doi:10.1371/journal.pbio.1002220

Martin, P., Makepeace, K., Hill, S. A., Hood, D. W., & Moxon, E. R. (2005). Microsatellite instability regulates transcription factor binding and gene expression. Proceedings of the National Academy of Sciences, 102(10), 3800-3804. doi:10.1073/pnas.0406805102

Mattenberger, F., Sabater-Muñoz, B., Hallsworth, J. E., & Fares, M. A. (2017). Glycerol stress inSaccharomyces cerevisiae: Cellular responses and evolved adaptations. Environmental Microbiology, 19(3), 990-1007. doi:10.1111/1462-2920.13603

Mattenberger, F., Sabater-Muñoz, B., Toft, C., & Fares, M. A. (2016). The Phenotypic Plasticity of Duplicated Genes in Saccharomyces cerevisiae and the Origin of Adaptations. G3: Genes|Genomes|Genetics, 7(1), 63-75. doi:10.1534/g3.116.035329

Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M., & Snyder, M. (2008). The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing. Science, 320(5881), 1344-1349. doi:10.1126/science.1158441

O’Hely, M. (2006). A Diffusion Approach to Approximating Preservation Probabilities for Gene Duplicates. Journal of Mathematical Biology, 53(2), 215-230. doi:10.1007/s00285-006-0001-6

Ohno, S. (1999). Gene duplication and the uniqueness of vertebrate genomes circa 1970–1999. Seminars in Cell & Developmental Biology, 10(5), 517-522. doi:10.1006/scdb.1999.0332

Papp, B., Pál, C., & Hurst, L. D. (2003). Dosage sensitivity and the evolution of gene families in yeast. Nature, 424(6945), 194-197. doi:10.1038/nature01771

Park, C., Qian, W., & Zhang, J. (2012). Genomic evidence for elevated mutation rates in highly expressed genes. EMBO reports, 13(12), 1123-1129. doi:10.1038/embor.2012.165

Payne, J. L., & Wagner, A. (2014). The Robustness and Evolvability of Transcription Factor Binding Sites. Science, 343(6173), 875-877. doi:10.1126/science.1249046

Pu, S., Wong, J., Turner, B., Cho, E., & Wodak, S. J. (2008). Up-to-date catalogues of yeast protein complexes. Nucleic Acids Research, 37(3), 825-831. doi:10.1093/nar/gkn1005

Qian, W., Liao, B.-Y., Chang, A. Y.-F., & Zhang, J. (2010). Maintenance of duplicate genes and their functional redundancy by reduced expression. Trends in Genetics, 26(10), 425-430. doi:10.1016/j.tig.2010.07.002

Raghuraman, M. K. (2001). Replication Dynamics of the Yeast Genome. Science, 294(5540), 115-121. doi:10.1126/science.294.5540.115

Rando, O. J., & Verstrepen, K. J. (2007). Timescales of Genetic and Epigenetic Inheritance. Cell, 128(4), 655-668. doi:10.1016/j.cell.2007.01.023

Reynolds, N. M., Ling, J., Roy, H., Banerjee, R., Repasky, S. E., Hamel, P., & Ibba, M. (2010). Cell-specific differences in the requirements for translation quality control. Proceedings of the National Academy of Sciences, 107(9), 4063-4068. doi:10.1073/pnas.0909640107

Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. doi:10.1093/bioinformatics/btp616

Rockman, M. V., & Wray, G. A. (2002). Abundant Raw Material for Cis-Regulatory Evolution in Humans. Molecular Biology and Evolution, 19(11), 1991-2004. doi:10.1093/oxfordjournals.molbev.a004023

Ruan, B., Palioura, S., Sabina, J., Marvin-Guy, L., Kochhar, S., LaRossa, R. A., & Soll, D. (2008). Quality control despite mistranslation caused by an ambiguous genetic code. Proceedings of the National Academy of Sciences, 105(43), 16502-16507. doi:10.1073/pnas.0809179105

Schuster-Böckler, B., & Lehner, B. (2012). Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature, 488(7412), 504-507. doi:10.1038/nature11273

Seoighe, C., & Wolfe, K. H. (1999). Yeast genome evolution in the post-genome era. Current Opinion in Microbiology, 2(5), 548-554. doi:10.1016/s1369-5274(99)00015-6

Streelman, J. T., & Kocher, T. D. (2002). Microsatellite variation associated with prolactin expression and growth of salt-challenged tilapia. Physiological Genomics, 9(1), 1-4. doi:10.1152/physiolgenomics.00105.2001

Supek, F., & Lehner, B. (2015). Differential DNA mismatch repair underlies mutation rate variation across the human genome. Nature, 521(7550), 81-84. doi:10.1038/nature14173

Taylor, J. S., & Raes, J. (2004). Duplication and Divergence: The Evolution of New Genes and Old Ideas. Annual Review of Genetics, 38(1), 615-643. doi:10.1146/annurev.genet.38.072902.092831

Tirosh, I., Barkai, N., & Verstrepen, K. J. (2009). Promoter architecture and the evolvability of gene expression. Journal of Biology, 8(11), 95. doi:10.1186/jbiol204

Tong, A. H. Y. (2001). Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants. Science, 294(5550), 2364-2368. doi:10.1126/science.1065810

Vinces, M. D., Legendre, M., Caldara, M., Hagihara, M., & Verstrepen, K. J. (2009). Unstable Tandem Repeats in Promoters Confer Transcriptional Evolvability. Science, 324(5931), 1213-1216. doi:10.1126/science.1170097

Wapinski, I., Pfeffer, A., Friedman, N., & Regev, A. (2007). Natural history and evolutionary principles of gene duplication in fungi. Nature, 449(7158), 54-61. doi:10.1038/nature06107

Wolfe, K. H., & Shields, D. C. (1997). Molecular evidence for an ancient duplication of the entire yeast genome. Nature, 387(6634), 708-713. doi:10.1038/42711

Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evolution, 24(8), 1586-1591. doi:10.1093/molbev/msm088

Zaher, H. S., & Green, R. (2008). Quality control by the ribosome following peptide bond formation. Nature, 457(7226), 161-166. doi:10.1038/nature07582

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record