- -

Elemental Composition of Natural Nanoparticles and Fine Colloids in European Forest Stream Waters and Their Role as Phosphorus Carriers

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Elemental Composition of Natural Nanoparticles and Fine Colloids in European Forest Stream Waters and Their Role as Phosphorus Carriers

Show simple item record

Files in this item

dc.contributor.author Gottselig, N. es_ES
dc.contributor.author Amelung, W. es_ES
dc.contributor.author Kirchner, J.W. es_ES
dc.contributor.author Bol, R. es_ES
dc.contributor.author Eugster, W. es_ES
dc.contributor.author Granger, S.J. es_ES
dc.contributor.author Hernández Crespo, Carmen es_ES
dc.contributor.author Herrmann, F. es_ES
dc.contributor.author Keizer, J.J. es_ES
dc.contributor.author Korkiakoski, M. es_ES
dc.contributor.author Laudon, H. es_ES
dc.contributor.author Lehner, I. es_ES
dc.contributor.author Löfgren, S. es_ES
dc.contributor.author Lohila, A. es_ES
dc.contributor.author Macleod, C.J.A. es_ES
dc.date.accessioned 2020-09-12T03:35:18Z
dc.date.available 2020-09-12T03:35:18Z
dc.date.issued 2017-10 es_ES
dc.identifier.issn 0886-6236 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149961
dc.description "This is the peer reviewed version of the following article: Gottselig, N., W. Amelung, J. W. Kirchner, R. Bol, W. Eugster, S. J. Granger, C. Hernández-Crespo, et al. 2017. Elemental Composition of Natural Nanoparticles and Fine Colloids in European Forest Stream Waters and Their Role as Phosphorus Carriers. Global Biogeochemical Cycles 31 (10). American Geophysical Union (AGU): 1592 1607. doi:10.1002/2017gb005657, which has been published in final form at https://doi.org/10.1002/2017GB005657. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] Biogeochemical cycling of elements largely occurs in dissolved state, but many elements may also be bound to natural nanoparticles (NNP, 1-100 nm) and fine colloids (100-450 nm). We examined the hypothesis that the size and composition of stream water NNP and colloids vary systematically across Europe. To test this hypothesis, 96 stream water samples were simultaneously collected in 26 forested headwater catchments along two transects across Europe. Three size fractions (similar to 1-20 nm, >20-60 nm, and >60 nm) of NNP and fine colloids were identified with Field Flow Fractionation coupled to inductively coupled plasma mass spectrometry and an organic carbon detector. The results showed that NNP and fine colloids constituted between 2 +/- 5% (Si) and 53 +/- 21% (Fe; mean +/- SD) of total element concentrations, indicating a substantial contribution of particles to element transport in these European streams, especially for P and Fe. The particulate contents of Fe, Al, and organic C were correlated to their total element concentrations, but those of particulate Si, Mn, P, and Ca were not. The fine colloidal fractions >60 nm were dominated by clay minerals across all sites. The resulting element patterns of NNP <60 nm changed from North to South Europe from Fe-to Ca-dominated particles, along with associated changes in acidity, forest type, and dominant lithology. es_ES
dc.description.sponsorship The authors gratefully acknowledge the assistance of the following people in locating suitable sampling sites, contacting site operators, performing the sampling, and providing data: A. Avila Castells (Autonomous University of Barcelona), R. Batalla (University of Lleida), P. Blomkvist (Swedish University of Agricultural Sciences), H. Bogena (Julich Research Center), A.K. Boulet (University of Aveiro), D. Estany (University of Lleida), F. Garnier (French National Institute of Agricultural Research), H.J. Hendricks-Franssen (Research Center Julich), L. JacksonBlake (James Hutton Institute, NIVA), T. Laurila (Finnish Meteorological Institute), A. Lindroth (Lund University), M.M. Monerris (Universitat Politecnica de Valencia), M. Ottosson Lofvenius (Swedish University of Agricultural Sciences), I. Taberman (Swedish University of Agricultural Sciences), F. Wendland (Research Center Julich), T. Zetterberg (Swedish University of Agricultural Sciences and The Swedish Environmental Research Institute, IVL) and further unnamed contributors. The Swedish Infrastructure for Ecosystem Science (SITES) and the Swedish Integrated Monitoring, the latter financed by the Swedish Environmental Protection Agency, and ICOS Sweden have supported sampling and provided data for the Swedish sites. J.J.K. gratefully acknowledges the support from CESAM (UID/AMB/50017/2013), funded by the FCT/MCTES (PIDDAC) with cofunding by FEDER through COMPETE. N.G. gratefully acknowledges all those who contributed to organizing and implementing the continental sampling. The raw data can be found at http://hdl.handle.net/2128/14937. This project was partly funded by the German Research Foundation (DFG KL2495/1-1). es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Global Biogeochemical Cycles es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Field-Flow fractionation es_ES
dc.subject Dissolved organic-matter es_ES
dc.subject Iron-Rich colloids es_ES
dc.subject River systems es_ES
dc.subject Trace-Metals es_ES
dc.subject Land-Use es_ES
dc.subject Soil es_ES
dc.subject Particles es_ES
dc.subject Transport es_ES
dc.subject Separation es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Elemental Composition of Natural Nanoparticles and Fine Colloids in European Forest Stream Waters and Their Role as Phosphorus Carriers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/2017GB005657 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876/147273/PT/Centre for Environmental and Marine Studies/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DFG//KL2495%2F1-1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation Gottselig, N.; Amelung, W.; Kirchner, J.; Bol, R.; Eugster, W.; Granger, S.; Hernández Crespo, C.... (2017). Elemental Composition of Natural Nanoparticles and Fine Colloids in European Forest Stream Waters and Their Role as Phosphorus Carriers. Global Biogeochemical Cycles. 31(10):1592-1607. https://doi.org/10.1002/2017GB005657 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/2017GB005657 es_ES
dc.description.upvformatpinicio 1592 es_ES
dc.description.upvformatpfin 1607 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 31 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\360050 es_ES
dc.contributor.funder Swedish Environmental Protection Agency es_ES
dc.contributor.funder Deutsche Forschungsgemeinschaft es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Baken, S., Moens, C., van der Grift, B., & Smolders, E. (2016). Phosphate binding by natural iron-rich colloids in streams. Water Research, 98, 326-333. doi:10.1016/j.watres.2016.04.032 es_ES
dc.description.references Baken, S., Regelink, I. C., Comans, R. N. J., Smolders, E., & Koopmans, G. F. (2016). Iron-rich colloids as carriers of phosphorus in streams: A field-flow fractionation study. Water Research, 99, 83-90. doi:10.1016/j.watres.2016.04.060 es_ES
dc.description.references Benedetti, M. F., Van Riemsdijk, W. H., Koopal, L. K., Kinniburgh, D. G., Gooddy, D. C., & Milne, C. J. (1996). Metal ion binding by natural organic matter: From the model to the field. Geochimica et Cosmochimica Acta, 60(14), 2503-2513. doi:10.1016/0016-7037(96)00113-5 es_ES
dc.description.references Binkley, D., Ice, G. G., Kaye, J., & Williams, C. A. (2004). NITROGEN AND PHOSPHORUS CONCENTRATIONS IN FOREST STREAMS OF THE UNITED STATES. Journal of the American Water Resources Association, 40(5), 1277-1291. doi:10.1111/j.1752-1688.2004.tb01586.x es_ES
dc.description.references Bishop, K., Buffam, I., Erlandsson, M., Fölster, J., Laudon, H., Seibert, J., & Temnerud, J. (2008). Aqua Incognita: the unknown headwaters. Hydrological Processes, 22(8), 1239-1242. doi:10.1002/hyp.7049 es_ES
dc.description.references Bol, R., Julich, D., Brödlin, D., Siemens, J., Kaiser, K., Dippold, M. A., … Hagedorn, F. (2016). Dissolved and colloidal phosphorus fluxes in forest ecosystems-an almost blind spot in ecosystem research. Journal of Plant Nutrition and Soil Science, 179(4), 425-438. doi:10.1002/jpln.201600079 es_ES
dc.description.references Buffle, J., & Leppard, G. G. (1995). Characterization of Aquatic Colloids and Macromolecules. 2. Key Role of Physical Structures on Analytical Results. Environmental Science & Technology, 29(9), 2176-2184. doi:10.1021/es00009a005 es_ES
dc.description.references Celi, L., & Barberis, E. (s. f.). Abiotic stabilization of organic phosphorus in the environment. Organic phosphorus in the environment, 113-132. doi:10.1079/9780851998220.0113 es_ES
dc.description.references Dahlqvist, R., Benedetti, M. F., Andersson, K., Turner, D., Larsson, T., Stolpe, B., & Ingri, J. (2004). Association of calcium with colloidal particles and speciation of calcium in the Kalix and Amazon rivers. Geochimica et Cosmochimica Acta, 68(20), 4059-4075. doi:10.1016/j.gca.2004.04.007 es_ES
dc.description.references Darch, T., Blackwell, M. S. A., Hawkins, J. M. B., Haygarth, P. M., & Chadwick, D. (2014). A Meta-Analysis of Organic and Inorganic Phosphorus in Organic Fertilizers, Soils, and Water: Implications for Water Quality. Critical Reviews in Environmental Science and Technology, 44(19), 2172-2202. doi:10.1080/10643389.2013.790752 es_ES
dc.description.references Dynesius, M., & Nilsson, C. (1994). Fragmentation and Flow Regulation of River Systems in the Northern Third of the World. Science, 266(5186), 753-762. doi:10.1126/science.266.5186.753 es_ES
dc.description.references Erickson, H. P. (2009). Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy. Biological Procedures Online, 11(1), 32-51. doi:10.1007/s12575-009-9008-x es_ES
dc.description.references Espinosa, M., Turner, B. L., & Haygarth, P. M. (1999). Preconcentration and Separation of Trace Phosphorus Compounds in Soil Leachate. Journal of Environmental Quality, 28(5), 1497-1504. doi:10.2134/jeq1999.00472425002800050015x es_ES
dc.description.references Fernández-Martínez, M., Vicca, S., Janssens, I. A., Sardans, J., Luyssaert, S., Campioli, M., … Peñuelas, J. (2014). Nutrient availability as the key regulator of global forest carbon balance. Nature Climate Change, 4(6), 471-476. doi:10.1038/nclimate2177 es_ES
dc.description.references Giddings, J., Yang, F., & Myers, M. (1976). Flow-field-flow fractionation: a versatile new separation method. Science, 193(4259), 1244-1245. doi:10.1126/science.959835 es_ES
dc.description.references Gimbert, L. J., Andrew, K. N., Haygarth, P. M., & Worsfold, P. J. (2003). Environmental applications of flow field-flow fractionation (FIFFF). TrAC Trends in Analytical Chemistry, 22(9), 615-633. doi:10.1016/s0165-9936(03)01103-8 es_ES
dc.description.references Gottselig, N., Bol, R., Nischwitz, V., Vereecken, H., Amelung, W., & Klumpp, E. (2014). Distribution of Phosphorus-Containing Fine Colloids and Nanoparticles in Stream Water of a Forest Catchment. Vadose Zone Journal, 13(7), vzj2014.01.0005. doi:10.2136/vzj2014.01.0005 es_ES
dc.description.references Gottselig, N., Nischwitz, V., Meyn, T., Amelung, W., Bol, R., Halle, C., … Klumpp, E. (2017). Phosphorus Binding to Nanoparticles and Colloids in Forest Stream Waters. Vadose Zone Journal, 16(3), vzj2016.07.0064. doi:10.2136/vzj2016.07.0064 es_ES
dc.description.references Hagedorn , A. G. 2006 EG-Sicherheitsdatenblatt (Gemäß 2001/58/EG) es_ES
dc.description.references Hart, B. T., Douglas, G. B., Beckett, R., Van Put, A., & Van Grieken, R. E. (1993). Characterization of colloidal and particulate matter transported by the magela creek system, Northern Australia. Hydrological Processes, 7(1), 105-118. doi:10.1002/hyp.3360070111 es_ES
dc.description.references Hassellöv, M., Lyvén, B., Haraldsson, C., & Sirinawin, W. (1999). Determination of Continuous Size and Trace Element Distribution of Colloidal Material in Natural Water by On-Line Coupling of Flow Field-Flow Fractionation with ICPMS. Analytical Chemistry, 71(16), 3497-3502. doi:10.1021/ac981455y es_ES
dc.description.references Hassellov, M., & von der Kammer, F. (2008). Iron Oxides as Geochemical Nanovectors for Metal Transport in Soil-River Systems. Elements, 4(6), 401-406. doi:10.2113/gselements.4.6.401 es_ES
dc.description.references Hens, M., & Merckx, R. (2001). Functional Characterization of Colloidal Phosphorus Species in the Soil Solution of Sandy Soils. Environmental Science & Technology, 35(3), 493-500. doi:10.1021/es0013576 es_ES
dc.description.references Hill, D. M., & Aplin, A. C. (2001). Role of colloids and fine particles in the transport of metals in rivers draining carbonate and silicate terrains. Limnology and Oceanography, 46(2), 331-344. doi:10.4319/lo.2001.46.2.0331 es_ES
dc.description.references Jarvie, H. P., Neal, C., Rowland, A. P., Neal, M., Morris, P. N., Lead, J. R., … Hockenhull, K. (2012). Role of riverine colloids in macronutrient and metal partitioning and transport, along an upland–lowland land-use continuum, under low-flow conditions. Science of The Total Environment, 434, 171-185. doi:10.1016/j.scitotenv.2011.11.061 es_ES
dc.description.references Jiang, X., Bol, R., Nischwitz, V., Siebers, N., Willbold, S., Vereecken, H., … Klumpp, E. (2015). Phosphorus Containing Water Dispersible Nanoparticles in Arable Soil. Journal of Environmental Quality, 44(6), 1772-1781. doi:10.2134/jeq2015.02.0085 es_ES
dc.description.references Kögel-Knabner, I., & Amelung, W. (2014). Dynamics, Chemistry, and Preservation of Organic Matter in Soils. Treatise on Geochemistry, 157-215. doi:10.1016/b978-0-08-095975-7.01012-3 es_ES
dc.description.references Krám, P., Hruška, J., & Shanley, J. B. (2012). Streamwater chemistry in three contrasting monolithologic Czech catchments. Applied Geochemistry, 27(9), 1854-1863. doi:10.1016/j.apgeochem.2012.02.020 es_ES
dc.description.references Lyvén, B., Hassellöv, M., Turner, D. R., Haraldsson, C., & Andersson, K. (2003). Competition between iron- and carbon-based colloidal carriers for trace metals in a freshwater assessed using flow field-flow fractionation coupled to ICPMS. Geochimica et Cosmochimica Acta, 67(20), 3791-3802. doi:10.1016/s0016-7037(03)00087-5 es_ES
dc.description.references Marschner, B., & Kalbitz, K. (2003). Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma, 113(3-4), 211-235. doi:10.1016/s0016-7061(02)00362-2 es_ES
dc.description.references Martin, J.-M., Dai, M.-H., & Cauwet, G. (1995). Significance of colloids in the biogeochemical cycling of organic carbon and trace metals in the Venice Lagoon (Italy). Limnology and Oceanography, 40(1), 119-131. doi:10.4319/lo.1995.40.1.0119 es_ES
dc.description.references Mattsson, T., Kortelainen, P., Laubel, A., Evans, D., Pujo-Pay, M., Räike, A., & Conan, P. (2009). Export of dissolved organic matter in relation to land use along a European climatic gradient. Science of The Total Environment, 407(6), 1967-1976. doi:10.1016/j.scitotenv.2008.11.014 es_ES
dc.description.references Missong, A., Bol, R., Willbold, S., Siemens, J., & Klumpp, E. (2016). Phosphorus forms in forest soil colloids as revealed by liquid-state31P-NMR. Journal of Plant Nutrition and Soil Science, 179(2), 159-167. doi:10.1002/jpln.201500119 es_ES
dc.description.references Montalvo, D., Degryse, F., & McLaughlin, M. J. (2015). Natural Colloidal P and Its Contribution to Plant P Uptake. Environmental Science & Technology, 49(6), 3427-3434. doi:10.1021/es504643f es_ES
dc.description.references Neubauer, E., Köhler, S. J., von der Kammer, F., Laudon, H., & Hofmann, T. (2013). Effect of pH and Stream Order on Iron and Arsenic Speciation in Boreal Catchments. Environmental Science & Technology, 47(13), 7120-7128. doi:10.1021/es401193j es_ES
dc.description.references Neubauer, E., v.d. Kammer, F., & Hofmann, T. (2011). Influence of carrier solution ionic strength and injected sample load on retention and recovery of natural nanoparticles using Flow Field-Flow Fractionation. Journal of Chromatography A, 1218(38), 6763-6773. doi:10.1016/j.chroma.2011.07.010 es_ES
dc.description.references Nischwitz, V., & Goenaga-Infante, H. (2012). Improved sample preparation and quality control for the characterisation of titanium dioxide nanoparticles in sunscreens using flow field flow fractionation on-line with inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 27(7), 1084. doi:10.1039/c2ja10387g es_ES
dc.description.references Ran, Y., Fu, J. ., Sheng, G. ., Beckett, R., & Hart, B. . (2000). Fractionation and composition of colloidal and suspended particulate materials in rivers. Chemosphere, 41(1-2), 33-43. doi:10.1016/s0045-6535(99)00387-2 es_ES
dc.description.references Regelink, I. C., Koopmans, G. F., van der Salm, C., Weng, L., & van Riemsdijk, W. H. (2013). Characterization of Colloidal Phosphorus Species in Drainage Waters from a Clay Soil Using Asymmetric Flow Field-Flow Fractionation. Journal of Environmental Quality, 42(2), 464-473. doi:10.2134/jeq2012.0322 es_ES
dc.description.references Regelink, I. C., Voegelin, A., Weng, L., Koopmans, G. F., & Comans, R. N. J. (2014). Characterization of Colloidal Fe from Soils Using Field-Flow Fractionation and Fe K-Edge X-ray Absorption Spectroscopy. Environmental Science & Technology, 48(8), 4307-4316. doi:10.1021/es405330x es_ES
dc.description.references Regelink, I. C., Weng, L., & van Riemsdijk, W. H. (2011). The contribution of organic and mineral colloidal nanoparticles to element transport in a podzol soil. Applied Geochemistry, 26, S241-S244. doi:10.1016/j.apgeochem.2011.03.114 es_ES
dc.description.references RICHARDSON, C. J. (1985). Mechanisms Controlling Phosphorus Retention Capacity in Freshwater Wetlands. Science, 228(4706), 1424-1427. doi:10.1126/science.228.4706.1424 es_ES
dc.description.references Roth , C. 2011 Sicherheitsdatenblatt Gemäß Verordnung (EG) Nr. 1907/2006 Rep es_ES
dc.description.references Schmitt, D., Taylor, H. E., Aiken, G. R., Roth, D. A., & Frimmel, F. H. (2002). Influence of Natural Organic Matter on the Adsorption of Metal Ions onto Clay Minerals. Environmental Science & Technology, 36(13), 2932-2938. doi:10.1021/es010271p es_ES
dc.description.references Six, J., Elliott, E. T., & Paustian, K. (1999). Aggregate and Soil Organic Matter Dynamics under Conventional and No-Tillage Systems. Soil Science Society of America Journal, 63(5), 1350-1358. doi:10.2136/sssaj1999.6351350x es_ES
dc.description.references Stolpe, B., Guo, L., Shiller, A. M., & Hassellöv, M. (2010). Size and composition of colloidal organic matter and trace elements in the Mississippi River, Pearl River and the northern Gulf of Mexico, as characterized by flow field-flow fractionation. Marine Chemistry, 118(3-4), 119-128. doi:10.1016/j.marchem.2009.11.007 es_ES
dc.description.references Tipping, E., & Hurley, M. . (1992). A unifying model of cation binding by humic substances. Geochimica et Cosmochimica Acta, 56(10), 3627-3641. doi:10.1016/0016-7037(92)90158-f es_ES
dc.description.references Tombácz, E., Libor, Z., Illés, E., Majzik, A., & Klumpp, E. (2004). The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Organic Geochemistry, 35(3), 257-267. doi:10.1016/j.orggeochem.2003.11.002 es_ES
dc.description.references Trostle, K. D., Ray Runyon, J., Pohlmann, M. A., Redfield, S. E., Pelletier, J., McIntosh, J., & Chorover, J. (2016). Colloids and organic matter complexation control trace metal concentration-discharge relationships in Marshall Gulch stream waters. Water Resources Research, 52(10), 7931-7944. doi:10.1002/2016wr019072 es_ES
dc.description.references U.S. Department of Agriculture 1993 Soil survey manual, chapter 3. Selected chemical properties es_ES
dc.description.references Vitousek, P. (1982). Nutrient Cycling and Nutrient Use Efficiency. The American Naturalist, 119(4), 553-572. doi:10.1086/283931 es_ES
dc.description.references Wells, M. L., & Goldberg, E. D. (1991). Occurrence of small colloids in sea water. Nature, 353(6342), 342-344. doi:10.1038/353342a0 es_ES
dc.description.references Wen, L.-S., Santschi, P., Gill, G., & Paternostro, C. (1999). Estuarine trace metal distributions in Galveston Bay: importance of colloidal forms in the speciation of the dissolved phase. Marine Chemistry, 63(3-4), 185-212. doi:10.1016/s0304-4203(98)00062-0 es_ES
dc.description.references Zirkler, D., Lang, F., & Kaupenjohann, M. (2012). «Lost in filtration»—The separation of soil colloids from larger particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 399, 35-40. doi:10.1016/j.colsurfa.2012.02.021 es_ES


This item appears in the following Collection(s)

Show simple item record