- -

Microhabitat competition between Iberian fish species and the endangered Júcar nase (Parachondrostoma arrigonis; Steindachner, 1866)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Microhabitat competition between Iberian fish species and the endangered Júcar nase (Parachondrostoma arrigonis; Steindachner, 1866)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Muñoz Mas, Rafael es_ES
dc.contributor.author Soares Costa, Rui Manuel es_ES
dc.contributor.author Alcaraz-Hernández, Juan Diego es_ES
dc.contributor.author Martinez-Capel, Francisco es_ES
dc.date.accessioned 2020-09-12T03:35:25Z
dc.date.available 2020-09-12T03:35:25Z
dc.date.issued 2017 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149963
dc.description "This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Ecohydraulics on 24-01-2017, available online: https://www.tandfonline.com/doi/full/10.1080/24705357.2016.1276417" es_ES
dc.description.abstract [EN] Competition with invasive species is recognized as having a major impact on biodiversity conservation. The upper part of the Cabriel River (Eastern Iberian Peninsula) harbours the most important population of the Júcar nase (Parachondrostoma arrigonis; Steindachner, 1866), a fish species in imminent danger of extinction. Currently, this species cohabits with several non-native species, such as the Iberian nase (Pseudochondrostoma polylepis; Steindachner, 1864) and the bermejuela (Achondrostoma arcasii; Steindachner, 1866). The potential habitat competition with these species was studied by analysing the spatial and temporal overlapping of suitable microhabitats. Generalized Additive Mixed Models (GAMMs) were developed to model microhabitat selection and these GAMMs were used to assess the habitat suitability (i.e. probability of presence) under several flows simulated with River2D. The Júcar nase will compete, spatially and temporally, for the few suitable microhabitats with bermejuela and, to a lesser extent, with small Iberian nase; conversely, large Iberian nase was of minor concern, due to increased differences in habitat preferences. This study represents an important assessment of potential competition and, therefore, these results might assist to better define future management practices in the upper part of the Cabriel River. es_ES
dc.description.sponsorship This study was funded by the Spanish Ministry of Economy and Competitiveness through the SCARCE project (Consolider Ingenio 2010 CSD2009 00065); the Universitat Politècnica de València, through the project UPPTE/2012/294 [PAID 06 12]; it was also partially funded by the IMPADAPT project (CGL2013-48424-C2-1-R) with Spanish MINECO (Ministerio de Economía y Competitividad) and FEDER funds. The authors would like to thank the help of the Conselleria de Territori i Vivenda (Generalitat Valenciana) and the Confederación Hidrográfica del Júcar (Spanish government), which provided environmental data to Alfredo Ollero, and the two anonymous reviewers who first suggested the submission of the paper to a regular journal. Finally, we would like to thank TECNOMA S.A. for the development of the hydraulic model. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Journal of Ecohydraulics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Generalized Additive Mixed Model es_ES
dc.subject Habitat duration curve es_ES
dc.subject Invasive species es_ES
dc.subject Mediterranean river es_ES
dc.subject Physical habitat simulation es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Microhabitat competition between Iberian fish species and the endangered Júcar nase (Parachondrostoma arrigonis; Steindachner, 1866) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/24705357.2016.1276417 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CGL2013-48424-C2-1-R/ES/ADAPTACION AL CAMBIO GLOBAL EN SISTEMAS DE RECURSOS HIDRICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2009-00065/ES/Evaluación y predicción de los efectos del cambio global en la cantidad y la calidad del agua en ríos ibéricos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-12/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Muñoz Mas, R.; Soares Costa, RM.; Alcaraz-Hernández, JD.; Martinez-Capel, F. (2017). Microhabitat competition between Iberian fish species and the endangered Júcar nase (Parachondrostoma arrigonis; Steindachner, 1866). Journal of Ecohydraulics. 2(1):3-15. https://doi.org/10.1080/24705357.2016.1276417 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/24705357.2016.1276417 es_ES
dc.description.upvformatpinicio 3 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2470-5365 es_ES
dc.relation.pasarela S\348045 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Alcaraz, C., Carmona-Catot, G., Risueño, P., Perea, S., Pérez, C., Doadrio, I., & Aparicio, E. (2014). Assessing population status of Parachondrostoma arrigonis (Steindachner, 1866), threats and conservation perspectives. Environmental Biology of Fishes, 98(1), 443-455. doi:10.1007/s10641-014-0274-3 es_ES
dc.description.references ALMEIDA, D., & GROSSMAN, G. D. (2012). Utility of direct observational methods for assessing competitive interactions between non-native and native freshwater fishes. Fisheries Management and Ecology, 19(2), 157-166. doi:10.1111/j.1365-2400.2012.00847.x es_ES
dc.description.references Almeida, D., Merino-Aguirre, R., Vilizzi, L., & Copp, G. H. (2014). Interspecific Aggressive Behaviour of Invasive Pumpkinseed Lepomis gibbosus in Iberian Fresh Waters. PLoS ONE, 9(2), e88038. doi:10.1371/journal.pone.0088038 es_ES
dc.description.references Anderson, D. R., Burnham, K. P., & Thompson, W. L. (2000). Null Hypothesis Testing: Problems, Prevalence, and an Alternative. The Journal of Wildlife Management, 64(4), 912. doi:10.2307/3803199 es_ES
dc.description.references Aparicio, E., Vargas, M. J., Olmo, J. M., & de Sostoa, A. (2000). Environmental Biology of Fishes, 59(1), 11-19. doi:10.1023/a:1007618517557 es_ES
dc.description.references Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys, 4(0), 40-79. doi:10.1214/09-ss054 es_ES
dc.description.references Austin, M. (2007). Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecological Modelling, 200(1-2), 1-19. doi:10.1016/j.ecolmodel.2006.07.005 es_ES
dc.description.references Baltz, D. M., Vondracek, B., Brown, L. R., & Moyle, P. B. (1991). Seasonal Changes in Microhabitat Selection by Rainbow Trout in a Small Stream. Transactions of the American Fisheries Society, 120(2), 166-176. doi:10.1577/1548-8659(1991)120<0166:scimsb>2.3.co;2 es_ES
dc.description.references Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution, 3(2), 327-338. doi:10.1111/j.2041-210x.2011.00172.x es_ES
dc.description.references Beakes, M. P., Moore, J. W., Retford, N., Brown, R., Merz, J. E., & Sogard, S. M. (2012). EVALUATING STATISTICAL APPROACHES TO QUANTIFYING JUVENILE CHINOOK SALMON HABITAT IN A REGULATED CALIFORNIA RIVER. River Research and Applications, 30(2), 180-191. doi:10.1002/rra.2632 es_ES
dc.description.references BROOK, B., SODHI, N., & BRADSHAW, C. (2008). Synergies among extinction drivers under global change. Trends in Ecology & Evolution, 23(8), 453-460. doi:10.1016/j.tree.2008.03.011 es_ES
dc.description.references Brosse, S., Laffaille, P., Gabas, S., & Lek, S. (2001). Is scuba sampling a relevant method to study fish microhabitat in lakes? Examples and comparisons for three European species. Ecology of Freshwater Fish, 10(3), 138-146. doi:10.1034/j.1600-0633.2001.100303.x es_ES
dc.description.references CLAVERO, M. (2011). Assessing the risk of freshwater fish introductions into the Iberian Peninsula. Freshwater Biology, 56(10), 2145-2155. doi:10.1111/j.1365-2427.2011.02642.x es_ES
dc.description.references Collares-Pereira, M. J., & Coelho, M. M. (1983). Biometrical analysis of Chondrostoma polylepis x Rutilus arcasi natural hybrids (Osteichthyes-Cypriniformes-Cyprinidae). Journal of Fish Biology, 23(5), 495-509. doi:10.1111/j.1095-8649.1983.tb02930.x es_ES
dc.description.references Costa, R. M. S., Martínez-Capel, F., Muñoz-Mas, R., Alcaraz-Hernández, J. D., & Garófano-Gómez, V. (2011). HABITAT SUITABILITY MODELLING AT MESOHABITAT SCALE AND EFFECTS OF DAM OPERATION ON THE ENDANGERED JúCAR NASE, PARACHONDROSTOMA ARRIGONIS (RIVER CABRIEL, SPAIN). River Research and Applications, 28(6), 740-752. doi:10.1002/rra.1598 es_ES
dc.description.references Dal Pozzolo A, Caelen O, Bontempi G. 2015. unbalanced: Racing for unbalanced methods selection. R package version 2.0. es_ES
dc.description.references Elith, J., & Leathwick, J. R. (2009). Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics, 40(1), 677-697. doi:10.1146/annurev.ecolsys.110308.120159 es_ES
dc.description.references Elvira, B., & Almodovar, A. (2001). Freshwater fish introductions in Spain: facts and figures at the beginning of the 21st century. Journal of Fish Biology, 59(sa), 323-331. doi:10.1111/j.1095-8649.2001.tb01393.x es_ES
dc.description.references Elvira, B., & Almodóvar, A. (2006). Threatened fishes of the world: Chondrostoma arrigonis (Steindachner, 1866) (Cyprinidae). Environmental Biology of Fishes, 81(1), 27-28. doi:10.1007/s10641-006-9172-7 es_ES
dc.description.references Friedman, J. H. (2001). machine. The Annals of Statistics, 29(5), 1189-1232. doi:10.1214/aos/1013203451 es_ES
dc.description.references Fukuda, S., De Baets, B., Waegeman, W., Verwaeren, J., & Mouton, A. M. (2013). Habitat prediction and knowledge extraction for spawning European grayling (Thymallus thymallus L.) using a broad range of species distribution models. Environmental Modelling & Software, 47, 1-6. doi:10.1016/j.envsoft.2013.04.005 es_ES
dc.description.references Girard, V., Monti, D., Valade, P., Lamouroux, N., Mallet, J.-P., & Grondin, H. (2013). HYDRAULIC PREFERENCES OF SHRIMPS AND FISHES IN TROPICAL INSULAR RIVERS. River Research and Applications, 30(6), 766-779. doi:10.1002/rra.2675 es_ES
dc.description.references Gozlan, R. E., Britton, J. R., Cowx, I., & Copp, G. H. (2010). Current knowledge on non-native freshwater fish introductions. Journal of Fish Biology, 76(4), 751-786. doi:10.1111/j.1095-8649.2010.02566.x es_ES
dc.description.references Guay, J. C., Boisclair, D., Rioux, D., Leclerc, M., Lapointe, M., & Legendre, P. (2000). Development and validation of numerical habitat models for juveniles of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 57(10), 2065-2075. doi:10.1139/f00-162 es_ES
dc.description.references Guisan, A., Graham, C. H., Elith, J., & Huettmann, F. (2007). Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions, 13(3), 332-340. doi:10.1111/j.1472-4642.2007.00342.x es_ES
dc.description.references Heggenes, J., Brabrand, Åg., & Saltveit, S. (1990). Comparison of Three Methods for Studies of Stream Habitat Use by Young Brown Trout and Atlantic Salmon. Transactions of the American Fisheries Society, 119(1), 101-111. doi:10.1577/1548-8659(1990)119<0101:cotmfs>2.3.co;2 es_ES
dc.description.references Jowett, I. G., & Davey, A. J. H. (2007). A Comparison of Composite Habitat Suitability Indices and Generalized Additive Models of Invertebrate Abundance and Fish Presence–Habitat Availability. Transactions of the American Fisheries Society, 136(2), 428-444. doi:10.1577/t06-104.1 es_ES
dc.description.references Jowett, I. G., & Duncan, M. J. (2012). Effectiveness of 1D and 2D hydraulic models for instream habitat analysis in a braided river. Ecological Engineering, 48, 92-100. doi:10.1016/j.ecoleng.2011.06.036 es_ES
dc.description.references Laurikkala, J. (2001). Improving Identification of Difficult Small Classes by Balancing Class Distribution. Lecture Notes in Computer Science, 63-66. doi:10.1007/3-540-48229-6_9 es_ES
dc.description.references Leunda, P. (2010). Impacts of non-native fishes on Iberian freshwater ichthyofauna: current knowledge and gaps. Aquatic Invasions, 5(3), 239-262. doi:10.3391/ai.2010.5.3.03 es_ES
dc.description.references Lin, X., & Zhang, D. (1999). Inference in generalized additive mixed modelsby using smoothing splines. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(2), 381-400. doi:10.1111/1467-9868.00183 es_ES
dc.description.references Liu, C., Berry, P. M., Dawson, T. P., & Pearson, R. G. (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28(3), 385-393. doi:10.1111/j.0906-7590.2005.03957.x es_ES
dc.description.references Maceda-Veiga, A. (2012). Towards the conservation of freshwater fish: Iberian Rivers as an example of threats and management practices. Reviews in Fish Biology and Fisheries, 23(1), 1-22. doi:10.1007/s11160-012-9275-5 es_ES
dc.description.references Maggini, R., Lehmann, A., Zimmermann, N. E., & Guisan, A. (2006). Improving generalized regression analysis for the spatial prediction of forest communities. Journal of Biogeography, 33(10), 1729-1749. doi:10.1111/j.1365-2699.2006.01465.x es_ES
dc.description.references Marr, S. M., Olden, J. D., Leprieur, F., Arismendi, I., Ćaleta, M., Morgan, D. L., … García-Berthou, E. (2013). A global assessment of freshwater fish introductions in mediterranean-climate regions. Hydrobiologia, 719(1), 317-329. doi:10.1007/s10750-013-1486-9 es_ES
dc.description.references MARTÍNEZ-CAPEL, F., GARCÍA DE JALÓN, D., WERENITZKY, D., BAEZA, D., & RODILLA-ALAMÁ, M. (2009). Microhabitat use by three endemic Iberian cyprinids in Mediterranean rivers (Tagus River Basin, Spain). Fisheries Management and Ecology, 16(1), 52-60. doi:10.1111/j.1365-2400.2008.00645.x es_ES
dc.description.references Mouton, A. M., Alcaraz-Hernández, J. D., De Baets, B., Goethals, P. L. M., & Martínez-Capel, F. (2011). Data-driven fuzzy habitat suitability models for brown trout in Spanish Mediterranean rivers. Environmental Modelling & Software, 26(5), 615-622. doi:10.1016/j.envsoft.2010.12.001 es_ES
dc.description.references Mouton, A. M., De Baets, B., & Goethals, P. L. M. (2010). Ecological relevance of performance criteria for species distribution models. Ecological Modelling, 221(16), 1995-2002. doi:10.1016/j.ecolmodel.2010.04.017 es_ES
dc.description.references Muñoz-Mas, R., Fukuda, S., Vezza, P., & Martínez-Capel, F. (2016). Comparing four methods for decision-tree induction: A case study on the invasive Iberian gudgeon ( Gobio lozanoi ; Doadrio and Madeira, 2004). Ecological Informatics, 34, 22-34. doi:10.1016/j.ecoinf.2016.04.011 es_ES
dc.description.references Muñoz-Mas, R., Lopez-Nicolas, A., Martínez-Capel, F., & Pulido-Velazquez, M. (2016). Shifts in the suitable habitat available for brown trout (Salmo trutta L.) under short-term climate change scenarios. Science of The Total Environment, 544, 686-700. doi:10.1016/j.scitotenv.2015.11.147 es_ES
dc.description.references Muñoz-Mas, R., Martínez-Capel, F., Garófano-Gómez, V., & Mouton, A. M. (2014). Application of Probabilistic Neural Networks to microhabitat suitability modelling for adult brown trout (Salmo trutta L.) in Iberian rivers. Environmental Modelling & Software, 59, 30-43. doi:10.1016/j.envsoft.2014.05.003 es_ES
dc.description.references Muñoz-Mas, R., Martínez-Capel, F., Schneider, M., & Mouton, A. M. (2012). Assessment of brown trout habitat suitability in the Jucar River Basin (SPAIN): Comparison of data-driven approaches with fuzzy-logic models and univariate suitability curves. Science of The Total Environment, 440, 123-131. doi:10.1016/j.scitotenv.2012.07.074 es_ES
dc.description.references Muñoz-Mas, R., Papadaki, C., Martínez-Capel, F., Zogaris, S., Ntoanidis, L., & Dimitriou, E. (2016). Generalized additive and fuzzy models in environmental flow assessment: A comparison employing the West Balkan trout (Salmo farioides; Karaman, 1938). Ecological Engineering, 91, 365-377. doi:10.1016/j.ecoleng.2016.03.009 es_ES
dc.description.references Olaya-Marín, E. J., Martínez-Capel, F., Soares Costa, R. M., & Alcaraz-Hernández, J. D. (2012). Modelling native fish richness to evaluate the effects of hydromorphological changes and river restoration (Júcar River Basin, Spain). Science of The Total Environment, 440, 95-105. doi:10.1016/j.scitotenv.2012.07.093 es_ES
dc.description.references Paredes-Arquiola, J., Solera, A., Martinez-Capel, F., Momblanch, A., & Andreu, J. (2014). Integrating water management, habitat modelling and water quality at the basin scale and environmental flow assessment: case study of the Tormes River, Spain. Hydrological Sciences Journal, 59(3-4), 878-889. doi:10.1080/02626667.2013.821573 es_ES
dc.description.references Platts, P. J., McClean, C. J., Lovett, J. C., & Marchant, R. (2008). Predicting tree distributions in an East African biodiversity hotspot: model selection, data bias and envelope uncertainty. Ecological Modelling, 218(1-2), 121-134. doi:10.1016/j.ecolmodel.2008.06.028 es_ES
dc.description.references Reyjol, Y., Hugueny, B., Pont, D., Bianco, P. G., Beier, U., Caiola, N., … Virbickas, T. (2007). Patterns in species richness and endemism of European freshwater fish. Global Ecology and Biogeography, 16(1), 65-75. doi:10.1111/j.1466-8238.2006.00264.x es_ES
dc.description.references Ribeiro, F., Elvira, B., Collares-Pereira, M. J., & Moyle, P. B. (2007). Life-history traits of non-native fishes in Iberian watersheds across several invasion stages: a first approach. Biological Invasions, 10(1), 89-102. doi:10.1007/s10530-007-9112-2 es_ES
dc.description.references RIBEIRO, F., & LEUNDA, P. M. (2012). Non-native fish impacts on Mediterranean freshwater ecosystems: current knowledge and research needs. Fisheries Management and Ecology, 19(2), 142-156. doi:10.1111/j.1365-2400.2011.00842.x es_ES
dc.description.references Rincon, P. A., Correas, A. M., Morcillo, F., Risueno, P., & Lobon-Cervia, J. (2002). Interaction between the introduced eastern mosquitofish and two autochthonous Spanish toothcarps. Journal of Fish Biology, 61(6), 1560-1585. doi:10.1111/j.1095-8649.2002.tb02498.x es_ES
dc.description.references Robalo, J. I., Almada, V. C., Levy, A., & Doadrio, I. (2007). Re-examination and phylogeny of the genus Chondrostoma based on mitochondrial and nuclear data and the definition of 5 new genera. Molecular Phylogenetics and Evolution, 42(2), 362-372. doi:10.1016/j.ympev.2006.07.003 es_ES
dc.description.references Romão, F., Quintella, B. R., Pereira, T. J., & Almeida, P. R. (2011). Swimming performance of two Iberian cyprinids: the Tagus nase Pseudochondrostoma polylepis (Steindachner, 1864) and the bordallo Squalius carolitertii (Doadrio, 1988). Journal of Applied Ichthyology, 28(1), 26-30. doi:10.1111/j.1439-0426.2011.01882.x es_ES
dc.description.references Shiroyama, R., & Yoshimura, C. (2016). Assessing bluegill (Lepomis macrochirus) habitat suitability using partial dependence function combined with classification approaches. Ecological Informatics, 35, 9-18. doi:10.1016/j.ecoinf.2016.06.005 es_ES
dc.description.references Thomas, J. A., & Bovee, K. D. (1993). Application and testing of a procedure to evaluate transferability of habitat suitability criteria. Regulated Rivers: Research & Management, 8(3), 285-294. doi:10.1002/rrr.3450080307 es_ES
dc.description.references Vezza, P., Muñoz-Mas, R., Martinez-Capel, F., & Mouton, A. (2015). Random forests to evaluate biotic interactions in fish distribution models. Environmental Modelling & Software, 67, 173-183. doi:10.1016/j.envsoft.2015.01.005 es_ES
dc.description.references Vilizzi, L., Copp, G. H., & Roussel, J.-M. (2004). Assessing variation in suitability curves and electivity profiles in temporal studies of fish habitat use. River Research and Applications, 20(5), 605-618. doi:10.1002/rra.767 es_ES
dc.description.references Wood, S. N. (2004). Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models. Journal of the American Statistical Association, 99(467), 673-686. doi:10.1198/016214504000000980 es_ES
dc.description.references Wood, S. N. (2006). Generalized Additive Models. doi:10.1201/9781420010404 es_ES
dc.description.references Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R. Statistics for Biology and Health. doi:10.1007/978-0-387-87458-6 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem