- -

Biosynthesis and Contents of Gibberellins in Seeded and Seedless Sweet Orange (Citrus sinensis L. Osbeck) Cultivars

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Biosynthesis and Contents of Gibberellins in Seeded and Seedless Sweet Orange (Citrus sinensis L. Osbeck) Cultivars

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bermejo, Almudena es_ES
dc.contributor.author MARTÍNEZ ALCÁNTARA, BELÉN es_ES
dc.contributor.author MARTÍNEZ CUENCA, MARIA RUS es_ES
dc.contributor.author Yuste Gallasch, Roberto es_ES
dc.contributor.author Mesejo Conejos, Carlos es_ES
dc.contributor.author Reig Valor, Carmina es_ES
dc.contributor.author Agustí Fonfría, Manuel es_ES
dc.contributor.author Primo Millo, Eduardo es_ES
dc.contributor.author IGLESIAS, DJ es_ES
dc.date.accessioned 2020-09-15T03:32:02Z
dc.date.available 2020-09-15T03:32:02Z
dc.date.issued 2016-12 es_ES
dc.identifier.issn 0721-7595 es_ES
dc.identifier.uri http://hdl.handle.net/10251/150035
dc.description.abstract [EN] In this work, we study the capacity to biosynthesize gibberellins (GA) of ovules (either fertilised or unfertilised), developing seeds and pericarp from fruitlets and their relation with fruit set capacity. Experiments were performed in adult, 12-year-old trees of seeded (Pineapple) and seedless parthenocarpic (Washington navel) sweet orange [Citrus sinensis L. Osbeck] cultivars. The activity of GA20-, GA3- and GA2-oxidases and gibberellin levels were measured in the ovules and pericarp of fruitlets in different development states. The results indicate that ovules are the main sites of gibberellin synthesis in fruitlets during the post-anthesis period. The most intense GA(1) synthesis-coincident with the highest expression of GA20ox2, GA3ox1 and GA2ox1-was detected in the ovules of the seeded cultivar, probably induced by fecundation and associated with low early fruitlet abscission rates. By contrast, the low activity detected in the sterile cultivar appears to be rather developmentally or constitutively regulated. As a fruitlet develops, the GA(1) concentration is augmented in the pericarp in comparison to ovules or developing seeds, and levels therein did not exhibit noticeable differences between varieties. Furthermore, developing seeds from pineapple had higher GA(1) content than the unfertilised abortive ovules from Washington navel. Taken together, data suggest a main role for this hormone in the control of fruitlet abscission, and also demonstrate a function in seed development. es_ES
dc.description.sponsorship We thank Drs. Isabel Lopez-Diaz and Esther Carrera for the hormone quantification carried out at the Plant Hormone Quantification Service, IBMCP, Valencia, Spain. Thanks are due to Teresa Sabater from the IBMCP, for their help. This work has been supported by two research projects, RTA2013-00024-CO2-01 from INIA (Ministerio de Economia y Competitividad, Spain) and IVIA-5423 from Conselleria de Agricultura (Generalitat Valenciana, Valencia, Spain). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Plant Growth Regulation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Citrus sinensis es_ES
dc.subject Gibberellins es_ES
dc.subject GA-oxidases es_ES
dc.subject Pineapple es_ES
dc.subject Seeds es_ES
dc.subject Washington navel es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title Biosynthesis and Contents of Gibberellins in Seeded and Seedless Sweet Orange (Citrus sinensis L. Osbeck) Cultivars es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00344-016-9602-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2013-00024-C02-01/ES/Estudio de factores bioquímicos, fisiológicos y moleculares relacionados con la alternancia de cosechas en cítricos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IVIA-5423/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani es_ES
dc.description.bibliographicCitation Bermejo, A.; Martínez Alcántara, B.; Martínez Cuenca, MR.; Yuste Gallasch, R.; Mesejo Conejos, C.; Reig Valor, C.; Agustí Fonfría, M.... (2016). Biosynthesis and Contents of Gibberellins in Seeded and Seedless Sweet Orange (Citrus sinensis L. Osbeck) Cultivars. Journal of Plant Growth Regulation. 35(4):1036-1048. https://doi.org/10.1007/s00344-016-9602-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00344-016-9602-5 es_ES
dc.description.upvformatpinicio 1036 es_ES
dc.description.upvformatpfin 1048 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 35 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\312948 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Ben-Cheikh W, Perez-Botella J, Tadeo FR, Talón M, Primo-Millo E (1997) Pollination increases gibberellin levels in developing ovaries of seeded varieties of citrus. Plant Physiol 114:557–564 es_ES
dc.description.references Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39 es_ES
dc.description.references De Jong M, Mariani C, Vriezen WH (2009) The role of auxin and gibberellin in tomato fruit set. J Exp Bot 60:1523–1532 es_ES
dc.description.references Dorcey E, Urbez C, Blázquez MA, Carbonell J, Pérez-Amador MA (2009) Fertilization-depend auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. Plant J 58:318–332 es_ES
dc.description.references Eeuwens CJ, Schwabe WW (1975) Seed and pod wall development in Pisum sativum L. in relation to extracted and applied hormones. J Exp Bot 26:1–14 es_ES
dc.description.references Erickson L, Brannaman BL (1960) Abscission of reproductive structures and leaves of orange trees. J Am Soc Hort Sci 75:222–229 es_ES
dc.description.references Fos M, Nuez F, García-Martinez JL (2000) The gene pat-2, which induces natural parthenocarpy, alters the gibberellin content in unpollinated tomato ovaries. Plant Physiol 122:471–480 es_ES
dc.description.references Fos M, Proano K, Nuez F, García-Martinez JL (2001) Role of gibberellins in parthenocarpic fruit development induced by the genetic system pat-3/pat-4 in tomato. Physiol Plant 111:545–550 es_ES
dc.description.references Frost HB, Soost RK (1968) Seed reproduction: development of gametes and embryos. In: Reuther W, Batchelor LD, Webber HJ (eds) The Citrus Industry, vol 2., University of CaliforniaCalifornia, USA, pp 290–320 es_ES
dc.description.references García-Hurtado N, Carrera E, Ruíz-Rivero O, López-Gresa MP, Hedden P, Gong F, García-Martínez JL (2012) The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. J Exp Bot 63:5803–5813 es_ES
dc.description.references García-Martinez JL, García-Papi MA (1979) The influence of gibberellic acid, 2,4-dichlorophenoxyacetic acid and 6-benzylaminopurine on fruit set of Clementine mandarin. Sci Hort 10:285–293 es_ES
dc.description.references García-Martínez JL, Martí M, Sabater T, Maldonado A, Vercher Y (1991a) Development of fertilized ovules and their role in the growth of pea pod. Physiol Plant 83:411–416 es_ES
dc.description.references García-Martínez JL, Santes C, Croker SJ, Hedden P (1991b) Identification, quantitation, and distribution of gibberellins in fruits of Pisum sativum cv. Alaska during pod development. Planta 184:53–60 es_ES
dc.description.references García-Martínez JL, López-Díaz M, Sanchez-Beltrán MJ, García-Martínez JL, Phillips AL, Ward DA, Gaskin P, Hedden P (1997) Isolation and transcript analysis of gibberellin 20-oxidase genes in pea and bean in relation to fruit development. Plant Mol Biol 33:1073–1084 es_ES
dc.description.references Giacomelli L, Rota-Stabelli O, Masuero D, Acheampong AK, Moretto M, Caputi L (2013) Gibberellin metabolism in Vitis vinifera L. during bloom and fruit set: functional characterization and evolution of grapevine gibberellin oxidases. J Exp Bot 64:4403–4419 es_ES
dc.description.references Gómez-Cadenas A, Mehouachi J, Tadeo FR, Primo-Millo E, Talón M (2000) Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus. Planta 210:636–643 es_ES
dc.description.references Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acid Res 40:D1178–D1186 (Database issue) es_ES
dc.description.references Guardiola JL, García-Marí F, Agustí M (1984) Competition and fruit set in the Washington Navel orange. Physiol Plant 62:297–302 es_ES
dc.description.references Hazra P, Dutta AK, Chatterjee P (2010) Altered gibberellin and auxin levels in the ovaries in the manifestation of genetic parthenocarpy in tomato (Solanum lycopersicum). Curr Sci 99:1439–1443 es_ES
dc.description.references Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25 es_ES
dc.description.references Huerta L, García-Lor A, García-Martínez JL (2009) Characterization of gibberellin 20-oxidases in the citrus hybrid Carrizo citrange. Tree Physiol 29:569–577 es_ES
dc.description.references Iglesias DJ, Tadeo FR, Primo-Millo E, Talón M (2006) Carbohydrate and ethylene levels related to fruitlet drop through abscission zone A in citrus. Trees 20:348–355 es_ES
dc.description.references Mariotti L, Picciarelli P, Lombardi L, Ceccarelli N (2011) Fruit set and early fruit growth in tomato are associated with increases in indoleacetic acid, cytokinin, and bioactive gibberellin contents. J Plant Growth Reg 30:405–415 es_ES
dc.description.references Martí E, Carrera E, Ruiz-Rivero O, García-Martínez JL (2010) Hormonal regulation of tomato gibberellin 20-oxidase1 expressed in Arabidopsis. J Plant Physiol 167:1188–1196 es_ES
dc.description.references Medina M, Roque E, Oineda B, Cañas L, Rodriguez-Concepción M, Beltrán JP, Gómez-Mena C (2013) Early anther ablation triggers parthenocarpic fruit development in tomato. Plant Biotechnol J 11:770–779 es_ES
dc.description.references Mehouachi J, Serna D, Zaragoza S, Agustí M, Talón M, Primo Millo E (1995) Defoliation increases fruit abscission and reduces carbohydrate levels in developing fruits and woody tissues of Citrus unshiu. Plant Sci 107:189–197 es_ES
dc.description.references Mehouachi J, Iglesias DJ, Tadeo FR, Agustí M, Primo-Millo E, Talón M (2000) The role of leaves in citrus fruitlet abscission: effects on endogenous gibberellins levels and carbohydrate content. J Hort Sci Biotechnol 75:79–85 es_ES
dc.description.references Mesejo C, Yuste R, Martinez-Fuentes A, Reig C, Iglesias DJ, Primo-Millo E, Agustí M (2013) Self-pollination and parthenocarpic ability in developing ovaries of self-incompatible Clementine mandarins (C. clementina). Physiol Plant 148:187–196 es_ES
dc.description.references O´Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue 0. Protoplasma 59:368–373 es_ES
dc.description.references Ollimpieri I, Siligato F, Caccia R, Mariotti L, Ceccarelli N, Soressi GP, Mazzucato A (2007) Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta 226:877–888 es_ES
dc.description.references Ozga JA, Reinecke DM (2003) Hormonal interactions in fruit development. J Plant Growth Reg 22:73–81 es_ES
dc.description.references Ozga JA, Reinecke DM, Ayele BT, Ngo P, Nadeau C, Wickramarathna AD (2009) Developmental and hormonal regulation of gibberellin biosynthesis and catabolism in pea fruit. Plant Physiol 150:448–462 es_ES
dc.description.references Poling SM (1991) Identification of endogenous gibberellins in immature navel orange fruit. J Agric Food Chem 39:677–680 es_ES
dc.description.references Rodrigo MJ, García-Martínez JL, Santes CM, Gaskin P, Hedden P (1997) The role of gibberellins A(1) and A(3) in fruit growth of Pisum sativum L and the identification of gibberellins A(4) and A(7) in young seeds. Planta 201:446–455 es_ES
dc.description.references Ruan YL, Patric JW, Bouzayen M, Osorio S, Fernie AR (2012) Molecular regulation of seed and fruit set. Trends Plant Sci 17:656–665 es_ES
dc.description.references Santes CM, Hedden P, Gaskin P, García-Martínez JL (1995) Gibberellins and related compounds in young fruits of pea and their relationship to fruit set. Phytochemistry 40:1347–1355 es_ES
dc.description.references Seo M, Jikumaru Y, Kamiya Y (2011) Profiling of hormones and related metabolites in seed dormancy and germination studies. Methods Mol Biol 773:99–111 es_ES
dc.description.references Serfontein CM, Catling HD (1968) Determining the canopy area of citrus trees. S Afr Citrus J 413:14–15 es_ES
dc.description.references Serrani JC, Fos M, Atares A, García-Martínez JL (2007a) Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv micro-torn of tomato. J Plant Growth Reg 26:211–221 es_ES
dc.description.references Serrani JC, Sanjuan R, Ruiz-Rivero O, Fos M, García-Martínez JL (2007b) Gibberellin regulation of fruit set and growth in tomato. Plant Physiol 145:246–257 es_ES
dc.description.references Serrani JC, Ruiz-Rivero O, Fos M, García-Martínez JL (2008) Auxin-induced fruit-set in tomato is mediated in part by gibberellins. Plant J 56:922–934 es_ES
dc.description.references Tadeo FR, Tudela D, Primo-Millo E (1995) 1-Aminocyclopropane-1- carboxylic acid-induced ethylene stimulates callus formation by cell enlargement in the cambial region of internodal explants of citrus. Plant Sci 110:113–119 es_ES
dc.description.references Talón M, Hedden P, Primo-Millo E (1990a) Gibberellins in Citrus sinensis: a comparison between seeded and seedless varieties. J Plant Growth Reg 9:201–206 es_ES
dc.description.references Talón M, Zacarías L, Primo-Millo E (1990b) Hormonal changes associated with fruit set and development in mandarins differing in their parthenocarpic ability. Physiol Plant 79:400–406 es_ES
dc.description.references Talón M, Zacarías L, Primo-Millo E (1992) Gibberellins and parthenocarpic ability in developing ovaries of seedless mandarins. Plant Physiol 99:1575–1581 es_ES
dc.description.references Turnbull GCN (1989) Identification and quantitative analysis of gibberellins in Citrus. J Plant Growth Reg 8:273–282 es_ES
dc.description.references Yamaguchi S (2008) Gibberellin metabolism and its regulation. Ann Rev Plant Biol 59:225–251 es_ES
dc.description.references Yan J, Yuan F, Long G, Qin L, Deng Z (2012) Selection of reference genes for quantitative real-time RT-PCR analysis in citrus. Mol Biol Reports 39:1831–1838 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem