Mostrar el registro sencillo del ítem
dc.contributor.author | De Rosario Martínez, Helios | es_ES |
dc.contributor.author | Page Del Pozo, Alvaro Felipe | es_ES |
dc.contributor.author | Besa Gonzálvez, Antonio José | es_ES |
dc.contributor.author | Mata Amela, Vicente | es_ES |
dc.contributor.author | Conejero Navarro, Efrain | es_ES |
dc.date.accessioned | 2020-09-18T03:34:26Z | |
dc.date.available | 2020-09-18T03:34:26Z | |
dc.date.issued | 2012-11 | es_ES |
dc.identifier.issn | 0140-0118 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/150302 | |
dc.description.abstract | [EN] This paper proposes a kinematic approach for describing soft tissue artifacts (STA) in human movement analysis. Artifacts are represented as the field of relative displacements of markers with respect to the bone. This field has two components: deformation component (symmetric field) and rigid motion (skew-symmetric field). Only the skew-symmetric component propagates as an error to the joint variables, whereas the deformation component is filtered in the kinematic analysis process. Finally, a simple technique is proposed for analyzing the sources of variability to determine which part of the artifact may be modeled as an effect of the motion, and which part is due to other sources. This method has been applied to the analysis of the shank movement induced by vertical vibration in 10 subjects. The results show that the cluster deformation is very small with respect to the rigid component. Moreover, both components show a strong relationship with the movement of the tibia. These results suggest that artifacts can be modeled effectively as a systematic relative rigid movement of the marker cluster with respect to the underlying bone. This may be useful for assessing the potential effectiveness of the usual strategies for compensating for STA. © 2012 International Federation for Medical and Biological Engineering. | es_ES |
dc.description.sponsorship | This work has been funded by the Spanish Government and co-financed by EU FEDER funds (Grants DPI2009-13830-C02-01, DPI2009-13830-C02-02 and IMPIVA IMDEEA/2012/79 and IMDEEA/2012/80). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SPRINGER HEIDELBERG | es_ES |
dc.relation.ispartof | Medical & Biological Engineering & Computing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Human movement analysis | es_ES |
dc.subject | Kinematics | es_ES |
dc.subject | Soft tissue artifacts | es_ES |
dc.subject | Systematic and random errors | es_ES |
dc.subject | Vibrations | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Kinematic description of soft tissue artifacts: quantifying rigid versus deformation components and their relation with bone motion | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11517-012-0978-5 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/IMPIVA//IMDEEA%2F2012%2F80/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/IMPIVA//IMDEEA%2F2012%2F79/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2009-13830-C02-02/ES/Modelado Cinematico Y Dinamico Del Movimiento De Los Tejidos Blandos. Aplicacion Al Diseño De Modelos Biomecanicos (Desarrollo De Tecnicas Experimentales Y Validacion De Modelos)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2009-13830-C02-01/ES/Modelado Cinematico Y Dinamico Del Movimiento De Los Tejidos Blandos. Aplicacion Al Diseño De Modelos Biomecanicos (Desarrollo E Implementacion De Modelos)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | De Rosario Martínez, H.; Page Del Pozo, AF.; Besa Gonzálvez, AJ.; Mata Amela, V.; Conejero Navarro, E. (2012). Kinematic description of soft tissue artifacts: quantifying rigid versus deformation components and their relation with bone motion. Medical & Biological Engineering & Computing. 50(11):1173-1181. https://doi.org/10.1007/s11517-012-0978-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11517-012-0978-5 | es_ES |
dc.description.upvformatpinicio | 1173 | es_ES |
dc.description.upvformatpfin | 1181 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 50 | es_ES |
dc.description.issue | 11 | es_ES |
dc.identifier.pmid | 23099555 | es_ES |
dc.relation.pasarela | S\230793 | es_ES |
dc.contributor.funder | Instituto de la Pequeña y Mediana Industria de la Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Akbarshahi M, Schache AG, Fernandez JW, Baker R, Banks S, Pandy MG (2010) Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity. J Biomech 43:1292–1301 | es_ES |
dc.description.references | Alexander EJ, Andriacchi TP (2001) Correcting for deformation in skin-based marker systems. J Biomech 34:355–361 | es_ES |
dc.description.references | Andersen MS, Benoit DL, Damsgaard M, Ramsey DK, Rasmussen J (2010) Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics. J Biomech 43:268–273 | es_ES |
dc.description.references | Andriacchi TP, Alexander EJ, Toney MK, Dyrby C, Sum J (1998) A point cluster method for in vivo motion analysis: applied to a study of knee kinematics. J Biomech Eng 120:743–749 | es_ES |
dc.description.references | Benoit DL, Ramsey DK, Lamontagne M, Xu L, Wretenberg P, Renström P (2006) Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture 24:152–164 | es_ES |
dc.description.references | Camomilla V, Donati M, Stagni R, Cappozzo A (2009) Non-invasive assessment of superficial soft tissue local displacement during movement: a feasibility study. J Biomech 42:931–937 | es_ES |
dc.description.references | Cappello A, Cappozzo A, La Palombara PF, Lucchetti L, Leardini A (1997) Multiple anatomical landmark calibration for optimal bone pose estimation. Hum Mov Sci 16:259–274 | es_ES |
dc.description.references | Cappello A, Stagni R, Fantozzi S, Leardini A (2005) Soft tissue artifact compensation in knee kinematics by double anatomical landmark calibration: performance of a novel method during select motor tasks. IEEE Trans Biomed Eng 52:992–998 | es_ES |
dc.description.references | Cappozzo A, Della Croce U, Leardini A, Chiari L (2005) Human movement analysis using stereophotogrammetry: part 1: theoretical background. Gait Posture 21:186–196 | es_ES |
dc.description.references | Chèze L, Fregly BJ, Dimnet J (1995) A solidification procedure to facilitate kinematic analyses based on video system data. J Biomech 28:879–884 | es_ES |
dc.description.references | Dumas R, Cheze L (2009) Soft tissue artifact compensation by linear 3D interpolation and approximation methods. J Biomech 42:2214–2217 | es_ES |
dc.description.references | Ehrig RM, Taylor WR, Duda GN, Heller MO (2006) A survey of formal methods for determining the centre of rotation of ball joints. J Biomech 39:2798–2809 | es_ES |
dc.description.references | Ehrig RM, Taylor WR, Duda GN, Heller MO (2007) A survey of formal methods for determining functional joint axes. J Biomech 40:2150–2157 | es_ES |
dc.description.references | Fuller J, Liu LJ, Murphy MC, Mann RW (1997) A comparison of lower-extremity skeletal kinematics measured using skin- and pin-mounted markers. Hum Mov Sci 16:219–242 | es_ES |
dc.description.references | Gao B, Zheng N (2008) Investigation of soft tissue movement during level walking: translations and rotations of skin markers. J Biomech 41:3189–3195 | es_ES |
dc.description.references | Holden JP, Orsini JA, Siegel KL, Kepple TM, Gerber LH, Stanhope SJ (1997) Surface movement errors in shank kinematics and knee kinetics during gait. Gait Posture 5:217–227 | es_ES |
dc.description.references | Leardini A, Chiari L, Della Croce U, Cappozzo A (2005) Human movement analysis using stereo photogrammetry: part 3. Soft tissue artifact assessment and compensation. Gait Posture 21:212–225 | es_ES |
dc.description.references | Lucchetti L, Cappozzo A, Cappello A, Della Croce U (1998) Skin movement artefact assessment and compensation in the estimation of knee-joint kinematics. J Biomech 31:977–984 | es_ES |
dc.description.references | Nester C, Jones RK, Liu A, Howard D, Lundberg A, Arndt A, Lundgren P, Stacoff A, Wolf P (2007) Foot kinematics during walking measured using bone and surface mounted markers. J Biomech 40:3412–3423 | es_ES |
dc.description.references | Page A, de Rosario H, Mata V, Hoyos JV, Porcar R (2006) Effect of marker cluster design on the accuracy of human movement analysis using stereophotogrammetry. Med Biol Eng Comput 4:1113–1119 | es_ES |
dc.description.references | Page A, de Rosario H, Mata V, Atienza C (2009) Experimental Analysis of Rigid Body Motion. A Vector Method to Determine Finite and Infinitesimal Displacements From Point Coordinates. J Mech Des 131: 031005 | es_ES |
dc.description.references | Page A, Galvez JA, de Rosario H, Mata V, Prat J (2010) Optimal average path of the instantaneous helical axis in planar motions with one functional degree of freedom. J Biomech 43:375–378 | es_ES |
dc.description.references | Peters A, Galna B, Sangeux M, Morris M, Baker R (2010) Quantification of soft tissue artifact in lower limb human motion analysis: a systematic review. Gait Posture 31:1–8 | es_ES |
dc.description.references | Reinschmidt C, van den Bogert AJ, Lundberg A, Nigg BM, Murphy N, Stacoff A, Stano A (1997) Tibiofemoral and tibiocalcaneal motion during walking: external vs. skeletal markers. Gait Posture 6:98–109 | es_ES |
dc.description.references | Ryu T, Choi HS, Chung MK (2009) Soft tissue artifact compensation using displacement dependency between anatomical landmarks and skin markers- a preliminary study. Int J Ind Ergon 39:152–158 | es_ES |
dc.description.references | Sangeux M, Marin F, Charleux F, Dürselen L, Ho Ba Tho MC (2006) Quantification of the 3D relative movement of external marker sets vs. bones based on magnetic resonance imaging. Clin Biomech 21:984–991 | es_ES |
dc.description.references | Sati M, de Guise JA, Larouche S, Drouin G (1996) Quantitative assessment of skin-bone movement at the knee. Knee 3(3):121–138 | es_ES |
dc.description.references | Stagni R, Fantozzi S (2009) Can cluster deformation be an indicator of soft tissue artefact? Gait Posture 30(Suppl 1):S55 | es_ES |
dc.description.references | Stagni R, Fantozzi S, Cappello A, Leardini A (2005) Quantification of soft tissue artefact in motion analysis by combining 3D fluoroscopy and stereophotogrammetry: a study on two subjects. Clin Biomech 20(3):320–329 | es_ES |
dc.description.references | Stagni R, Fantozzi S, Cappello A (2009) Double calibration vs global optimization: performance and effectiveness for clinical application. Gait Posture 29:119–122 | es_ES |
dc.description.references | Taylor WR, Ehrig RM, Duda GN, Schell H, Seebeck P, Heller MO (2005) On the influence of soft tissue coverage in the determination of bone kinematics using skin markers. J Orthop Res 23(4):726–734 | es_ES |
dc.description.references | Tranberg R, Karlsson D (1998) The relative skin movement of the foot: a 2-D roentgen photogrammetry study. Clin Biomech 13(1):71–76 | es_ES |
dc.description.references | Tsai T-Y, Lu Tung-Wu, Kuo M-Y, Lin C–C (2011) Effects of soft tissue artifacts on the calculated kinematics and kinetics of the knee during stair-ascent. J Biomech 44(6):1182–1188 | es_ES |
dc.description.references | Woltring HJ, Long K, Osterbauer PJ, Fuhr AW (1994) Instantaneous helical axis estimation from 3-D video data in neck kinematics for whiplash diagnostics. J Biomech 27(12):1415–1432 | es_ES |