- -

Hybrid force/position control for a 3-DOF 1T2R parallel robot: Implementation, simulations and experiments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hybrid force/position control for a 3-DOF 1T2R parallel robot: Implementation, simulations and experiments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cazalilla, J. es_ES
dc.contributor.author Vallés Miquel, Marina es_ES
dc.contributor.author Valera Fernández, Ángel es_ES
dc.contributor.author Mata Amela, Vicente es_ES
dc.contributor.author Díaz-Rodríguez, Miguel es_ES
dc.date.accessioned 2020-09-18T03:34:31Z
dc.date.available 2020-09-18T03:34:31Z
dc.date.issued 2016-04-02 es_ES
dc.identifier.issn 1539-7734 es_ES
dc.identifier.uri http://hdl.handle.net/10251/150305
dc.description "This is an Author's Accepted Manuscript of an article published in Cazalilla, José, Marina Vallés, Ángel Valera, Vicente Mata, and Miguel Díaz-Rodríguez. 2016. Hybrid Force/Position Control for a 3-DOF 1T2R Parallel Robot: Implementation, Simulations and Experiments. Mechanics Based Design of Structures and Machines 44 (1 2). Informa UK Limited: 16 31. doi:10.1080/15397734.2015.1030679, available online at: https://www.tandfonline.com/doi/full/10.1080/15397734.2015.1030679." es_ES
dc.description.abstract [EN] A robot interacting with the environment requires that the end effector \hboxposition is tracked and that the forces of contact are kept below certain reference values. For instance, in a rehabilitation session using a robotic device, the contact forces are limited by the allowed strength of the human limbs and their complex-joints. In these cases, a control scheme which considers both position and force control is essential to avoid damage to either the end effector or the object interacting with the robot. This paper therefore develops a real-time force/position control scheme for a three-DOF parallel robot whose end effector holds a DOF one translation (1T) and two rotations (2R). The implemented hybrid force/position control considers, as a reference, the normal force on the mobile platform, which is measured by means of a load cell installed on the platform. The position control is designed to track the orientations of the robot either in joint or task space using a model-based control scheme with identified parameters. Moreover, the force control is based on a PD action. The control scheme is developed through simulations, before being applied to an actual parallel robot. The findings show that with the implemented controller, the actual robot accomplishes the reference values for the normal force on the mobile platform, while at the same time the platform accurately follows the required angular orientation. es_ES
dc.description.sponsorship The authors wish to thank the Plan Nacional de I+D, Comision Interministerial de Ciencia y Tecnologia (FEDER-CICYT) for the partial funding of this study under the projects DPI2011-28507-C02-01 and DPI2013-44227-R. This work was also partially supported by the Fondo Nacional de Ciencia, Tecnologia e Innovacion (FONACIT-Venezuela). es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Mechanics Based Design of Structures and Machines es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Dynamics es_ES
dc.subject Force control es_ES
dc.subject Mechatronics es_ES
dc.subject Parallel manipulator es_ES
dc.subject Robot control es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Hybrid force/position control for a 3-DOF 1T2R parallel robot: Implementation, simulations and experiments es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1080/15397734.2015.1030679 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2011-28507-C02-01/ES/DESARROLLO DE CONTROLADORES BASADOS EN MISIONES/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2013-44227-R/ES/METODOLOGIA DE DISEÑO DE SISTEMAS BIOMECATRONICOS. APLICACION AL DESARROLLO DE UN ROBOT PARALELO HIBRIDO PARA DIAGNOSTICO Y REHABILITACION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Cazalilla, J.; Vallés Miquel, M.; Valera Fernández, Á.; Mata Amela, V.; Díaz-Rodríguez, M. (2016). Hybrid force/position control for a 3-DOF 1T2R parallel robot: Implementation, simulations and experiments. Mechanics Based Design of Structures and Machines. 44(1-2):16-31. https://doi.org/10.1080/15397734.2015.1030679 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 5th International Symposium on Multibody Systems and Mechatronics (MuSMe 2014) es_ES
dc.relation.conferencedate Octubre 21-24,2014 es_ES
dc.relation.conferenceplace Huatulco Oaxaca, Mexico es_ES
dc.relation.publisherversion https://doi.org/10.1080/15397734.2015.1030679 es_ES
dc.description.upvformatpinicio 16 es_ES
dc.description.upvformatpfin 31 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 44 es_ES
dc.description.issue 1-2 es_ES
dc.relation.pasarela S\306981 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Fondo Nacional de Ciencia, Tecnología e Innovación, Venezuela es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Åström, K. J., & Murray, R. M. (2008). Feedback Systems. doi:10.1515/9781400828739 es_ES
dc.description.references Bellakehal, S., Andreff, N., Mezouar, Y., & Tadjine, M. (2011). Force/position control of parallel robots using exteroceptive pose measurements. Meccanica, 46(1), 195-205. doi:10.1007/s11012-010-9411-z es_ES
dc.description.references Cao, R., Gao, F., Zhang, Y., Pan, D., & Chen, W. (2014). A New Parameter Design Method of a 6-DOF Parallel Motion Simulator for a Given Workspace. Mechanics Based Design of Structures and Machines, 43(1), 1-18. doi:10.1080/15397734.2014.904234 es_ES
dc.description.references Carretero, J. A., Podhorodeski, R. P., Nahon, M. A., & Gosselin, C. M. (1999). Kinematic Analysis and Optimization of a New Three Degree-of-Freedom Spatial Parallel Manipulator. Journal of Mechanical Design, 122(1), 17-24. doi:10.1115/1.533542 es_ES
dc.description.references Clavel, R. (1988). DELTA, a fast robot with parallel geometry.Proceedings of 18th International Symposium on Industrial Robot, Lausanne, April, 91–100. es_ES
dc.description.references Díaz-Rodríguez, M., Mata, V., Valera, Á., & Page, Á. (2010). A methodology for dynamic parameters identification of 3-DOF parallel robots in terms of relevant parameters. Mechanism and Machine Theory, 45(9), 1337-1356. doi:10.1016/j.mechmachtheory.2010.04.007 es_ES
dc.description.references Diaz-Rodriguez, M., Valera, A., Mata, V., & Valles, M. (2013). Model-Based Control of a 3-DOF Parallel Robot Based on Identified Relevant Parameters. IEEE/ASME Transactions on Mechatronics, 18(6), 1737-1744. doi:10.1109/tmech.2012.2212716 es_ES
dc.description.references Farhat, N., Mata, V., Page, Á., & Valero, F. (2008). Identification of dynamic parameters of a 3-DOF RPS parallel manipulator. Mechanism and Machine Theory, 43(1), 1-17. doi:10.1016/j.mechmachtheory.2006.12.011 es_ES
dc.description.references Garg, A., Vikram, C. S., Gupta, S., Sutar, M. K., Pathak, P. M., Mehta, N. K., … Gupta, V. K. (2014). Design and Development of In Vivo Robot for Biopsy. Mechanics Based Design of Structures and Machines, 42(3), 278-295. doi:10.1080/15397734.2014.898587 es_ES
dc.description.references Gough, V. E., Whitehall, S. G. (1962). Universal tire test machine.Proceedings of 9th International Technical Congress FISITA, pp. 117–135. es_ES
dc.description.references García de Jalón, J., & Bayo, E. (1994). Kinematic and Dynamic Simulation of Multibody Systems. Mechanical Engineering Series. doi:10.1007/978-1-4612-2600-0 es_ES
dc.description.references Lee, K.-M., & Arjunan, S. (1991). A three-degrees-of-freedom micromotion in-parallel actuated manipulator. IEEE Transactions on Robotics and Automation, 7(5), 634-641. doi:10.1109/70.97875 es_ES
dc.description.references Li, Y., & Xu, Q. (2007). Design and Development of a Medical Parallel Robot for Cardiopulmonary Resuscitation. IEEE/ASME Transactions on Mechatronics, 12(3), 265-273. doi:10.1109/tmech.2007.897257 es_ES
dc.description.references Merlet, J.-P. (2000). Parallel Robots. Solid Mechanics and Its Applications. doi:10.1007/978-94-010-9587-7 es_ES
dc.description.references Pierrot, F., Nabat, V., Company, O., Krut, S., & Poignet, P. (2009). Optimal Design of a 4-DOF Parallel Manipulator: From Academia to Industry. IEEE Transactions on Robotics, 25(2), 213-224. doi:10.1109/tro.2008.2011412 es_ES
dc.description.references Rosillo, N., Valera, A., Benimeli, F., Mata, V., & Valero, F. (2011). Real‐time solving of dynamic problem in industrial robots. Industrial Robot: An International Journal, 38(2), 119-129. doi:10.1108/01439911111106336 es_ES
dc.description.references Steward, D. A. (1965). A platform with 6 degrees of freedom.Proceedings of the Institution of Mechanical Engineers, Part 1, vol. 15, pp. 371–386. es_ES
dc.description.references Valera, A., Benimeli, F., Solaz, J., De Rosario, H., Robertsson, A., Nilsson, K., … Mellado, M. (2011). A Car-Seat Example of Automated Anthropomorphic Testing of Fabrics Using Force-Controlled Robot Motions. IEEE Transactions on Automation Science and Engineering, 8(2), 280-291. doi:10.1109/tase.2010.2079931 es_ES
dc.description.references Vallés, M., Díaz-Rodríguez, M., Valera, Á., Mata, V., & Page, Á. (2012). Mechatronic Development and Dynamic Control of a 3-DOF Parallel Manipulator. Mechanics Based Design of Structures and Machines, 40(4), 434-452. doi:10.1080/15397734.2012.687292 es_ES
dc.description.references Volpe, R., & Khosla, P. (1993). A theoretical and experimental investigation of explicit force control strategies for manipulators. IEEE Transactions on Automatic Control, 38(11), 1634-1650. doi:10.1109/9.262033 es_ES
dc.description.references Zarkandi, S. (2011). Kinematics and Singularity Analysis of a Parallel Manipulator with Three Rotational and One Translational DOFs. Mechanics Based Design of Structures and Machines, 39(3), 392-407. doi:10.1080/15397734.2011.559149 es_ES
dc.description.references Zeng, G., & Hemami, A. (1997). An overview of robot force control. Robotica, 15(5), 473-482. doi:10.1017/s026357479700057x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem