- -

Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters

Show simple item record

Files in this item

dc.contributor.author Borrego, Adrián es_ES
dc.contributor.author Latorre Grau, Jorge es_ES
dc.contributor.author Llorens Rodríguez, Roberto es_ES
dc.contributor.author Alcañiz Raya, Mariano Luis es_ES
dc.contributor.author Noé, Enrique es_ES
dc.date.accessioned 2020-09-18T03:35:12Z
dc.date.available 2020-09-18T03:35:12Z
dc.date.issued 2016-08-09 es_ES
dc.identifier.issn 1743-0003 es_ES
dc.identifier.uri http://hdl.handle.net/10251/150327
dc.description.abstract [EN] Background: Even though virtual reality (VR) is increasingly used in rehabilitation, the implementation of walking navigation in VR still poses a technological challenge for current motion tracking systems. Different metaphors simulate locomotion without involving real gait kinematics, which can affect presence, orientation, spatial memory and cognition, and even performance. All these factors can dissuade their use in rehabilitation. We hypothesize that a marker-based head tracking solution would allow walking in VR with high sense of presence and without causing sickness. The objectives of this study were to determine the accuracy, the jitter, and the lag of the tracking system and its elicited sickness and presence in comparison of a CAVE system. Methods: The accuracy and the jitter around the working area at three different heights and the lag of the head tracking system were analyzed. In addition, 47 healthy subjects completed a search task that involved navigation in the walking VR system and in the CAVE system. Navigation was enabled by natural locomotion in the walking VR system and through a specific device in the CAVE system. An HMD was used as display in the walking VR system. After interacting with each system, subjects rated their sickness in a seven-point scale and their presence in the Slater-Usoh-Steed Questionnaire and a modified version of the Presence Questionnaire. Results: Better performance was registered at higher heights, where accuracy was less than 0.6 cm and the jitter was about 6 mm. The lag of the system was 120 ms. Participants reported that both systems caused similar low levels of sickness (about 2.4 over 7). However, ratings showed that the walking VR system elicited higher sense of presence than the CAVE system in both the Slater-Usoh-Steed Questionnaire (17.6 +/- 0.3 vs 14.6 +/- 0.6 over 21, respectively) and the modified Presence Questionnaire (107.4 +/- 2.0 vs 93.5 +/- 3.2 over 147, respectively). Conclusions: The marker-based solution provided accurate, robust, and fast head tracking to allow navigation in the VR system by walking without causing relevant sickness and promoting higher sense of presence than CAVE systems, thus enabling natural walking in full-scale environments, which can enhance the ecological validity of VR-based rehabilitation applications. es_ES
dc.description.sponsorship The authors wish to thank the staff of LabHuman for their support in this project, especially José Miguel Martínez and José Roda for their assistance. This study was funded in part by Ministerio de Economia y Competitividad of Spain (Project NeuroVR, TIN2013-44741-R and Project REACT, TIN2014-61975-EXP), by Ministerio de Educacion y Ciencia of Spain (Project Consolider-C, SEJ2006-14301/PSIC), and by Universitat Politecnica de Valencia (Grant PAID-10-14). es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof Journal of NeuroEngineering and Rehabilitation es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Virtual reality es_ES
dc.subject Walking es_ES
dc.subject Motion tracking es_ES
dc.subject Presence es_ES
dc.subject Ecological validity es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12984-016-0174-1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-10-14/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2013-44741-R/ES/REALIDAD VIRTUAL PARA LA COMPRENSION Y LA PROMOCION DE LOS MECANISMOS NEURALES DE INTERACCION Y REHABILITACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2014-61975-EXP/ES/REHABILITACION DE ESTADOS ALTERADOS DE CONCIENCIA EN FASE TEMPRANA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//SEJ2006-14301/ES/NUEVAS TECNOLOGIAS DE LA INFORMACION Y LA COMUNICACION: INTEGRACION Y CONSOLIDACION DE SU USO EN CIENCIAS SOCIALES PARA MEJORAR LA SALUD, LA CALIDAD DE VIDA Y EL BIENESTAR./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.description.bibliographicCitation Borrego, A.; Latorre Grau, J.; Llorens Rodríguez, R.; Alcañiz Raya, ML.; Noé, E. (2016). Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters. Journal of NeuroEngineering and Rehabilitation. 13:1-9. https://doi.org/10.1186/s12984-016-0174-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s12984-016-0174-1 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.identifier.pmid 27503112 es_ES
dc.identifier.pmcid PMC4977644 es_ES
dc.relation.pasarela S\316855 es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Lee KM. Presence. Explicated Communication Theory. 2004;14(1):27–50. es_ES
dc.description.references Riva G. Is presence a technology issue? Some insights from cognitive sciences. Virtual Reality. 2009;13(3):159–69. es_ES
dc.description.references Banos RM, et al. Immersion and emotion: their impact on the sense of presence. Cyberpsychol Behav. 2004;7(6):734–41. es_ES
dc.description.references Llorens R, et al. Tracking systems for virtual rehabilitation: objective performance vs. subjective experience. A practical scenario. Sensors (Basel). 2015;15(3):6586–606. es_ES
dc.description.references Navarro MD, et al. Validation of a low-cost virtual reality system for training street-crossing. A comparative study in healthy, neglected and non-neglected stroke individuals. Neuropsychol Rehabil. 2013;23(4):597–618. es_ES
dc.description.references Parsons TD. Virtual reality for enhanced ecological validity and experimental control in the clinical, affective and social neurosciences. Front Hum Neurosci. 2015;9:660. es_ES
dc.description.references Cameirao MS, et al. Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: methodology, design, psychometrics, usability and validation. J Neuroeng Rehabil. 2010;7:48. es_ES
dc.description.references Llorens R, et al. Improvement in balance using a virtual reality-based stepping exercise: a randomized controlled trial involving individuals with chronic stroke. Clin Rehabil. 2015;29(3):261–8. es_ES
dc.description.references Llorens R, et al. Videogame-based group therapy to improve self-awareness and social skills after traumatic brain injury. J Neuroeng Rehabil. 2015;12:37. es_ES
dc.description.references Fong KN, et al. Usability of a virtual reality environment simulating an automated teller machine for assessing and training persons with acquired brain injury. J Neuroeng Rehabil. 2010;7:19. es_ES
dc.description.references Levin MF, Weiss PL, Keshner EA. Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles. Phys Ther. 2015;95(3):415–25. es_ES
dc.description.references Llorens R, et al. Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96(3):418–25. e2. es_ES
dc.description.references Cruz-Neira C, et al. Scientists in wonderland: A report on visualization applications in the CAVE virtual reality environment. In: 1993. Proceedings IEEE 1993 Symposium on Research Frontiers in Virtual Reality. 1993. es_ES
dc.description.references Juan MC, Perez D. Comparison of the levels of presence and anxiety in an acrophobic environment viewed via HMD or CAVE. Presence. 2009;18(3):232–48. es_ES
dc.description.references Yang YR, et al. Virtual reality-based training improves community ambulation in individuals with stroke: a randomized controlled trial. Gait Posture. 2008;28(2):201–6. es_ES
dc.description.references Cho KH, Lee WH. Virtual walking training program using a real-world video recording for patients with chronic stroke: a pilot study. Am J Phys Med Rehabil. 2013;92(5):371–84. es_ES
dc.description.references Darter BJ, Wilken JM. Gait training with virtual reality-based real-time feedback: improving gait performance following transfemoral amputation. Phys Ther. 2011;91(9):1385–94. es_ES
dc.description.references Yang S, et al. Improving balance skills in patients who had stroke through virtual reality treadmill training. Am J Phys Med Rehabil. 2011;90(12):969–78. es_ES
dc.description.references Walker ML, et al. Virtual reality-enhanced partial body weight-supported treadmill training poststroke: feasibility and effectiveness in 6 subjects. Arch Phys Med Rehabil. 2010;91(1):115–22. es_ES
dc.description.references Riley PO, et al. A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects. Gait Posture. 2007;26(1):17–24. es_ES
dc.description.references Alton F, et al. A kinematic comparison of overground and treadmill walking. Clin Biomech. 1998;13(6):434–40. es_ES
dc.description.references Lee SJ, Hidler J. Biomechanics of overground vs. treadmill walking in healthy individuals. J Appl Physiol. 2008;104(3). es_ES
dc.description.references Slater M. Measuring presence: a response to the witmer and Singer presence questionnaire. Presence. 1999;8(5):560–5. es_ES
dc.description.references Viau A, et al. Reaching in reality and virtual reality: a comparison of movement kinematics in healthy subjects and in adults with hemiparesis. J Neuroeng Rehabil. 2004;1(1):11. es_ES
dc.description.references Parsons TD, et al. The potential of function-led virtual environments for ecologically valid measures of executive function in experimental and clinical neuropsychology. Neuropsychol Rehabil. 2015;11:1–31. doi: 10.1080/09602011.2015.1109524 . es_ES
dc.description.references Aravind G, Lamontagne A. Perceptual and locomotor factors affect obstacle avoidance in persons with visuospatial neglect. J Neuroeng Rehabil. 2014;11:38. es_ES
dc.description.references Darekar A, Lamontagne A, Fung J. Dynamic clearance measure to evaluate locomotor and perceptuo-motor strategies used for obstacle circumvention in a virtual environment. Hum Mov Sci. 2015;40:359–71. es_ES
dc.description.references Whittle MW. Chapter 4 - Methods of gait analysis. In: Whittle MW, editor. Gait analysis. Edinburgh: Butterworth-Heinemann; 2007. p. 137–75. es_ES
dc.description.references Hodgson E, et al. WeaVR: a self-contained and wearable immersive virtual environment simulation system. Behav Res Methods. 2015;47(1):296–307. es_ES
dc.description.references Akizuki H, et al. Effects of immersion in virtual reality on postural control. Neurosci Lett. 2005;379(1):23–6. es_ES
dc.description.references Thies SB, et al. Comparison of linear accelerations from three measurement systems during "reach & grasp". Med Eng Phys. 2007;29(9):967–72. es_ES
dc.description.references Fiala M. Designing highly reliable fiducial markers. IEEE Trans Pattern Anal Mach Intell. 2010;32(7):1317–24. es_ES
dc.description.references Garrido-Jurado S, et al. Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition. 2014;47(6):2280–92. es_ES
dc.description.references Kim K, et al. Effects of virtual environment platforms on emotional responses. Comput Methods Programs Biomed. 2014;113(3):882–93. es_ES
dc.description.references Slater M, Steed A. A virtual presence counter. Presence. 2000;9(5):413–34. es_ES
dc.description.references Witmer BG, Singer MJ. Measuring presence in virtual environments: a presence questionnaire. Presence Teleop Virt. 1998;7(3):225–40. es_ES
dc.description.references Martín-Gutiérrez J, et al. Design and validation of an augmented book for spatial abilities development in engineering students. Comput Graph. 2010;34(1):77–91. es_ES
dc.description.references Lopez-Mir F, et al. Design and validation of an augmented reality system for laparoscopic surgery in a real environment. Biomed Res Int. 2013;2013:758491. es_ES
dc.description.references Abawi DF, Bienwald J, Dorner R. Accuracy in optical tracking with fiducial markers: an accuracy function for ARToolKit. In: Third IEEE and ACM International symposium on mixed and augmented reality, ISMAR 2004. 2004. es_ES
dc.description.references Malbezin P, Piekarski W, Thomas BH. Measuring ARTootKit accuracy in long distance tracking experiments. In: The first IEEE International workshop augmented reality toolkit. 2002. es_ES
dc.description.references Paquette C, Paquet N, Fung J. Aging affects coordination of rapid head motions with trunk and pelvis movements during standing and walking. Gait Posture. 2006;24(1):62–9. es_ES
dc.description.references Graham JE, et al. Walking speed threshold for classifying walking independence in hospitalized older adults. Phys Ther. 2010;90(11):1591–7. es_ES
dc.description.references Gorea A. A refresher of the original Bloch’s Law paper (bloch, july 1885). i-Perception. 2015;6:4. es_ES
dc.description.references Moss JD, Muth ER. Characteristics of head-mounted displays and their effects on Simulator sickness. Hum Factors. 2011;53(3):308–19. es_ES
dc.description.references Draper MH, et al. Effects of image scale and system time delay on Simulator sickness within head-coupled virtual environments. Hum Factors. 2001;43(1):129–46. es_ES
dc.description.references Fujisaki W. Effects of delayed visual feedback on grooved pegboard test performance. Front Psychol. 2012;3:61. es_ES
dc.description.references Keshner EA, et al. Augmenting sensory-motor conflict promotes adaptation of postural behaviors in a virtual environment. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:1379–82. es_ES
dc.description.references Slaboda JC, Keshner EA. Reorientation to vertical modulated by combined support surface tilt and virtual visual flow in healthy elders and adults with stroke. J Neurol. 2012;259(12):2664–72. es_ES
dc.description.references Tossavainen T. Comparison of CAVE and HMD for visual stimulation in postural control research. Stud Health Technol Inform. 2004;98:385–7. es_ES
dc.description.references Akiduki H, et al. Visual-vestibular conflict induced by virtual reality in humans. Neurosci Lett. 2003;340(3):197–200. es_ES
dc.description.references Duh HBL, et al. Effects of field of view on balance in an immersive environment. In: Virtual Reality, 2001. Proceedings. IEEE. 2001. es_ES
dc.description.references Krijn M, et al. Treatment of acrophobia in virtual reality: the role of immersion and presence. Behav Res Ther. 2004;42(2):229–39. es_ES
dc.description.references Mania K, Chalmers A. The effects of levels of immersion on memory and presence in virtual environments: a reality centered approach. Cyberpsychol Behav. 2001;4(2):247–64. es_ES
dc.description.references Gorini A, et al. The role of immersion and narrative in mediated presence: the virtual hospital experience. Cyberpsychol Behav Soc Netw. 2011;14(3):99–105. es_ES
dc.description.references Fromberger P, et al. Virtual viewing time: the relationship between presence and sexual interest in androphilic and gynephilic Men. PLoS One. 2015;10(5), e0127156. es_ES
dc.description.references Slater M, et al. Visual realism enhances realistic response in an immersive virtual environment. IEEE Comput Graph Appl. 2009;29(3):76–84. es_ES
dc.description.references Nir-Hadad SY, et al. A virtual shopping task for the assessment of executive functions: Validity for people with stroke. Neuropsychol Rehabil. 2015;11:1–26. doi: 10.1080/09602011.2015.1109523 . es_ES
dc.description.references Vasilyeva M, Lourenco SF. Development of spatial cognition. Wiley Interdiscip Rev Cogn Sci. 2012;3(3):349–62. es_ES
dc.description.references Banakou D, Groten R, Slater M. Illusory ownership of a virtual child body causes overestimation of object sizes and implicit attitude changes. Proc Natl Acad Sci U S A. 2013;110(31):12846–51. es_ES
dc.description.references Yee N, Bailenson JN, Ducheneaut N. The proteus effect: implications of transformed digital self-representation on online and offline behavior. Commun Res. 2009;36(2):285–312. es_ES
dc.description.references Baylor AL. Promoting motivation with virtual agents and avatars: role of visual presence and appearance. Philos Trans R Soc Lond B Biol Sci. 2009;364(1535):3559–65. es_ES
dc.description.references Clemente M, et al. Assessment of the influence of navigation control and screen size on the sense of presence in virtual reality using EEG. Expert Sys App. 2014;41(4, Part 2):1584–92. es_ES
dc.description.references Clemente M, et al. An fMRI study to analyze neural correlates of presence during virtual reality experiences. 2013. Interacting with Computers. es_ES


This item appears in the following Collection(s)

Show simple item record