Mostrar el registro sencillo del ítem
dc.contributor.author | Benavent López, Enrique | es_ES |
dc.contributor.author | Corberán, Angel | es_ES |
dc.contributor.author | Plana, Isaac | es_ES |
dc.contributor.author | Sanchís Llopis, José María | es_ES |
dc.date.accessioned | 2020-09-18T03:35:34Z | |
dc.date.available | 2020-09-18T03:35:34Z | |
dc.date.issued | 2011-11 | es_ES |
dc.identifier.issn | 0028-3045 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/150338 | |
dc.description.abstract | [EN] The min-max windy rural postman problem is a multiple vehicle version of the windy rural postman problem, WRPP, which consists of minimizing the length of the longest route to find a set of balanced routes for the vehicles. In a previous paper, an ILP formulation and a partial polyhedral study were presented, and a preliminary branch-and-cut algorithm that produced some promising computational results was implemented. In this article, we present further results for this problem. We describe several new facet-inducing inequalities obtained from the WRPP, as well as some inequalities that have to be satisfied by any optimal solution. We present an enhanced branch-and-cut algorithm that takes advantage of both these new inequalities and high quality min-max K-WRPP feasible solutions obtained by a metaheuristic. Computational results on a large set of instances are also reported. © 2011 Wiley Periodicals, Inc. | es_ES |
dc.description.sponsorship | Contract grant sponsor: Ministerio de Ciencia e Innovacion of Spain; Contract grant numbers: MTM2006-14961-C05-02, MTM2009-14039-C06-02 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | WILEY-BLACKWELL | es_ES |
dc.relation.ispartof | Networks | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Facets | es_ES |
dc.subject | Multivehicle | es_ES |
dc.subject | Rural postman problem | es_ES |
dc.subject | Windy postman problem | es_ES |
dc.subject | Windy rural postman problem | es_ES |
dc.subject | Multi-vehicles | es_ES |
dc.subject | Postman problems | es_ES |
dc.subject | Windy rural postman problems | es_ES |
dc.subject | Algorithms | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | New Facets and an Enhanced Branch-and-Cut for the Min-Max K-Windy Rural Postman Problem | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/net.20469 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2009-14039-C06-02/ES/Modelos Y Metodos De Programacion Matematica Y Sus Aplicaciones (Optimos2)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//MTM2006-14961-C05-02/ES/OPTIMOS: OPTIMIZACION PARA LA MOVILIDAD SOSTENIBLE/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Benavent López, E.; Corberán, A.; Plana, I.; Sanchís Llopis, JM. (2011). New Facets and an Enhanced Branch-and-Cut for the Min-Max K-Windy Rural Postman Problem. Networks. 58(4):255-272. https://doi.org/10.1002/net.20469 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/net.20469 | es_ES |
dc.description.upvformatpinicio | 255 | es_ES |
dc.description.upvformatpfin | 272 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 58 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\211865 | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.description.references | D. Ahr Contributions to multiple postmen problems 2004 | es_ES |
dc.description.references | Ahr, D., & Reinelt, G. (2002). New Heuristics and Lower Bounds for the Min-Max k-Chinese Postman Problem. Lecture Notes in Computer Science, 64-74. doi:10.1007/3-540-45749-6_10 | es_ES |
dc.description.references | Ahr, D., & Reinelt, G. (2006). A tabu search algorithm for the min–max k-Chinese postman problem. Computers & Operations Research, 33(12), 3403-3422. doi:10.1016/j.cor.2005.02.011 | es_ES |
dc.description.references | D. Applegate R. E. Bixby V. Chvátal W. Cook Finding cuts in the TSP 1995 | es_ES |
dc.description.references | Benavent, E., Carrotta, A., Corberán, A., Sanchis, J. M., & Vigo, D. (2007). Lower bounds and heuristics for the Windy Rural Postman Problem. European Journal of Operational Research, 176(2), 855-869. doi:10.1016/j.ejor.2005.09.021 | es_ES |
dc.description.references | Benavent, E., Corberán, A., Plana, I., & Sanchis, J. M. (2009). Min-Max K -vehicles windy rural postman problem. Networks, 54(4), 216-226. doi:10.1002/net.20334 | es_ES |
dc.description.references | Benavent, E., Corberán, Á., & Sanchis, J. M. (2009). A metaheuristic for the min–max windy rural postman problem with K vehicles. Computational Management Science, 7(3), 269-287. doi:10.1007/s10287-009-0119-2 | es_ES |
dc.description.references | Corberáan, A., Letchford, A. N., & Sanchis, J. M. (2001). A cutting plane algorithm for the General Routing Problem. Mathematical Programming, 90(2), 291-316. doi:10.1007/pl00011426 | es_ES |
dc.description.references | Corberán, A., Plana, I., & Sanchis, J. M. (2007). A branch & cut algorithm for the windy general routing problem and special cases. Networks, 49(4), 245-257. doi:10.1002/net.20176 | es_ES |
dc.description.references | Corberán, A., Plana, I., & Sanchis, J. M. (2008). The Windy General Routing Polyhedron: A Global View of Many Known Arc Routing Polyhedra. SIAM Journal on Discrete Mathematics, 22(2), 606-628. doi:10.1137/050640886 | es_ES |
dc.description.references | Frederickson, G. N., Hecht, M. S., & Kim, C. E. (1978). Approximation Algorithms for Some Routing Problems. SIAM Journal on Computing, 7(2), 178-193. doi:10.1137/0207017 | es_ES |
dc.description.references | Pearn, W. L. (1994). Solvable cases of the k-person Chinese postman problem. Operations Research Letters, 16(4), 241-244. doi:10.1016/0167-6377(94)90073-6 | es_ES |
dc.description.references | I. Plana The windy general routing problem 2005 | es_ES |