- -

Adsorption of BSA on Passivated CoCrMo PVD Alloy: An EQCM and XPS Investigation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Adsorption of BSA on Passivated CoCrMo PVD Alloy: An EQCM and XPS Investigation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Valero Vidal, Carlos es_ES
dc.contributor.author Igual Muñoz, Anna Neus es_ES
dc.contributor.author Olsson, Claes es_ES
dc.contributor.author Mischler, Stefano es_ES
dc.date.accessioned 2020-09-18T03:35:45Z
dc.date.available 2020-09-18T03:35:45Z
dc.date.issued 2014 es_ES
dc.identifier.issn 0013-4651 es_ES
dc.identifier.uri http://hdl.handle.net/10251/150340
dc.description.abstract [EN] Adsorption of Bovine Serum Albumin (BSA) on an anodically passivated CoCrMo biomedical alloy has been studied using the Electrochemical Quartz Crystal Microbalance (EQCM) in phosphate buffer solution at 37 degrees C. CoCrMo layers were deposited on the quartz crystals by physical vapor deposition. EQCM measurements were performed under potentiostatic conditions and combined with X-ray Photoelectron Spectroscopy (XPS) analysis. Adsorption of BSA onto the CoCrMo alloy surface was found to favor passive dissolution without modification of the chemical composition and thickness of the oxide passive film. In addition, passive film growth and adsorption kinetics of the protein follow a logarithmic trend. Both EQCM and XPS techniques demonstrated that protein coverage depends on the applied potential. (C) 2014 The Electrochemical Society. All rights reserved. es_ES
dc.description.sponsorship We express our gratitude to the Spanish Government, "Ministerio de Economia y Competitividad" for the economic support (project reference MAT2011-22481) and the post-graduate grant (Ref.AP2007-01243), the assistance of N. Xanthopoulos with the XPS measurements and P. Mettraux with the PVD deposits. es_ES
dc.language Inglés es_ES
dc.publisher The Electrochemical Society es_ES
dc.relation.ispartof Journal of The Electrochemical Society es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject EQCM es_ES
dc.subject Biomedical alloy es_ES
dc.subject Protein adsorption es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Adsorption of BSA on Passivated CoCrMo PVD Alloy: An EQCM and XPS Investigation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1149/2.038406jes es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//AP2007-01243/ES/AP2007-01243/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2011-22481/ES/ESTUDIO DE PROPIEDADES FISICO-QUIMICAS DE INTERFASE BIOMATERIAL/SUERO FISIOLOGICO PARA DETERMINAR MECANISMOS DE DEGRADACION TRIBO-ELECTROQUIMICOS DE ALEACIONES BIOMEDICAS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Valero Vidal, C.; Igual Muñoz, AN.; Olsson, C.; Mischler, S. (2014). Adsorption of BSA on Passivated CoCrMo PVD Alloy: An EQCM and XPS Investigation. Journal of The Electrochemical Society. 161(6):294-301. https://doi.org/10.1149/2.038406jes es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1149/2.038406jes es_ES
dc.description.upvformatpinicio 294 es_ES
dc.description.upvformatpfin 301 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 161 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\284055 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Katti, K. S. (2004). Biomaterials in total joint replacement. Colloids and Surfaces B: Biointerfaces, 39(3), 133-142. doi:10.1016/j.colsurfb.2003.12.002 es_ES
dc.description.references Okazaki, Y. (2002). Effect of friction on anodic polarization properties of metallic biomaterials. Biomaterials, 23(9), 2071-2077. doi:10.1016/s0142-9612(01)00337-4 es_ES
dc.description.references Virtanen, S., Milošev, I., Gomez-Barrena, E., Trebše, R., Salo, J., & Konttinen, Y. T. (2008). Special modes of corrosion under physiological and simulated physiological conditions. Acta Biomaterialia, 4(3), 468-476. doi:10.1016/j.actbio.2007.12.003 es_ES
dc.description.references Milošev, I., & Strehblow, H.-H. (2003). The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution. Electrochimica Acta, 48(19), 2767-2774. doi:10.1016/s0013-4686(03)00396-7 es_ES
dc.description.references Hodgson, A. W. E., Kurz, S., Virtanen, S., Fervel, V., Olsson, C.-O. A., & Mischler, S. (2004). Passive and transpassive behaviour of CoCrMo in simulated biological solutions. Electrochimica Acta, 49(13), 2167-2178. doi:10.1016/j.electacta.2003.12.043 es_ES
dc.description.references Muñoz, A. I., & Mischler, S. (2007). Interactive Effects of Albumin and Phosphate Ions on the Corrosion of CoCrMo Implant Alloy. Journal of The Electrochemical Society, 154(10), C562. doi:10.1149/1.2764238 es_ES
dc.description.references Hanawa, T., Hiromoto, S., & Asami, K. (2001). Characterization of the surface oxide film of a Co–Cr–Mo alloy after being located in quasi-biological environments using XPS. Applied Surface Science, 183(1-2), 68-75. doi:10.1016/s0169-4332(01)00551-7 es_ES
dc.description.references Hanawa, T. (2004). Metal ion release from metal implants. Materials Science and Engineering: C, 24(6-8), 745-752. doi:10.1016/j.msec.2004.08.018 es_ES
dc.description.references Fleury, C., Petit, A., Mwale, F., Antoniou, J., Zukor, D. J., Tabrizian, M., & Huk, O. L. (2006). Effect of cobalt and chromium ions on human MG-63 osteoblasts in vitro: Morphology, cytotoxicity, and oxidative stress. Biomaterials, 27(18), 3351-3360. doi:10.1016/j.biomaterials.2006.01.035 es_ES
dc.description.references Germain, M. A., Hatton, A., Williams, S., Matthews, J. B., Stone, M. H., Fisher, J., & Ingham, E. (2003). Comparison of the cytotoxicity of clinically relevant cobalt–chromium and alumina ceramic wear particles in vitro. Biomaterials, 24(3), 469-479. doi:10.1016/s0142-9612(02)00360-5 es_ES
dc.description.references Massè, A., Bosetti, M., Buratti, C., Visentin, O., Bergadano, D., & Cannas, M. (2003). Ion release and chromosomal damage from total hip prostheses with metal-on-metal articulation. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 67B(2), 750-757. doi:10.1002/jbm.b.10070 es_ES
dc.description.references Dumbleton, J. H., & Manley, M. T. (2005). Metal-on-Metal Total Hip Replacement. The Journal of Arthroplasty, 20(2), 174-188. doi:10.1016/j.arth.2004.08.011 es_ES
dc.description.references Vidal, C. V., & Muñoz, A. I. (2009). Effect of thermal treatment and applied potential on the electrochemical behaviour of CoCrMo biomedical alloy. Electrochimica Acta, 54(6), 1798-1809. doi:10.1016/j.electacta.2008.10.018 es_ES
dc.description.references Milo?ev, I., & Strehblow, H.-H. (2000). The behavior of stainless steels in physiological solution containing complexing agent studied by X-ray photoelectron spectroscopy. Journal of Biomedical Materials Research, 52(2), 404-412. doi:10.1002/1097-4636(200011)52:2<404::aid-jbm22>3.0.co;2-z es_ES
dc.description.references Fukuzaki, S., Urano, H., & Nagata, K. (1996). Adsorption of bovine serum albumin onto metal oxide surfaces. Journal of Fermentation and Bioengineering, 81(2), 163-167. doi:10.1016/0922-338x(96)87596-9 es_ES
dc.description.references Malmsten, M. (1998). Formation of Adsorbed Protein Layers. Journal of Colloid and Interface Science, 207(2), 186-199. doi:10.1006/jcis.1998.5763 es_ES
dc.description.references Khan, M. A., Williams, R. L., & Williams, D. F. (1996). In-vitro corrosion and wear of titanium alloys in the biological environment. Biomaterials, 17(22), 2117-2126. doi:10.1016/0142-9612(96)00029-4 es_ES
dc.description.references Kanagaraja, S. (1996). Platelet binding and protein adsorption to titanium and gold after short time exposure to heparinized plasma and whole blood. Biomaterials, 17(23), 2225-2232. doi:10.1016/0142-9612(95)00311-8 es_ES
dc.description.references Yan, Y., Neville, A., & Dowson, D. (2007). Biotribocorrosion of CoCrMo orthopaedic implant materials—Assessing the formation and effect of the biofilm. Tribology International, 40(10-12), 1492-1499. doi:10.1016/j.triboint.2007.02.019 es_ES
dc.description.references Hallab, N. J., Mikecz, K., Vermes, C., Skipor, A., & Jacobs, J. J. (2001). Molecular and Cellular Biochemistry, 222(1/2), 127-136. doi:10.1023/a:1017979710992 es_ES
dc.description.references Righetti, P. G., & Caravaggio, T. (1976). Isoelectric points and molecular weights of proteins. Journal of Chromatography A, 127(1), 1-28. doi:10.1016/s0021-9673(00)98537-6 es_ES
dc.description.references Valero Vidal, C., Olmo Juan, A., & Igual Muñoz, A. (2010). Adsorption of bovine serum albumin on CoCrMo surface: Effect of temperature and protein concentration. Colloids and Surfaces B: Biointerfaces, 80(1), 1-11. doi:10.1016/j.colsurfb.2010.05.005 es_ES
dc.description.references Buttry, D. A., & Ward, M. D. (1992). Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chemical Reviews, 92(6), 1355-1379. doi:10.1021/cr00014a006 es_ES
dc.description.references Daujotis, V., Jasaitis, D., & Raudonis, R. (1997). The mechanism of electroreduction of silver cyanide complexes in aqueous electrolytes—I. Time-resolved EQCM study. Electrochimica Acta, 42(9), 1337-1344. doi:10.1016/s0013-4686(96)00310-6 es_ES
dc.description.references Vidal, C. V., Muñoz, A. I., Olsson, C.-O. A., & Mischler, S. (2012). Passivation of a CoCrMo PVD Alloy with Biomedical Composition under Simulated Physiological Conditions Studied by EQCM and XPS. Journal of The Electrochemical Society, 159(5), C233-C243. doi:10.1149/2.090205jes es_ES
dc.description.references Li, J., Huang, X., & Chen, L. (2000). X-Ray Diffraction and Vibrational Spectroscopic Studies on PAN-LiTFSI Polymer Electrolytes. Journal of The Electrochemical Society, 147(7), 2653. doi:10.1149/1.1393585 es_ES
dc.description.references Olsson, C.-O. A., & Landolt, D. (2001). Film Growth during Anodic Polarization in the Passive Region on 304 Stainless Steels with Cr, Mo, or W Additions Studied with EQCM and XPS. Journal of The Electrochemical Society, 148(11), B438. doi:10.1149/1.1404969 es_ES
dc.description.references Olsson, C.-O. ., & Landolt, D. (2003). Passive films on stainless steels—chemistry, structure and growth. Electrochimica Acta, 48(9), 1093-1104. doi:10.1016/s0013-4686(02)00841-1 es_ES
dc.description.references Frateur, I., Lecoeur, J., Zanna, S., Olsson, C.-O. A., Landolt, D., & Marcus, P. (2007). Adsorption of BSA on passivated chromium studied by a flow-cell EQCM and XPS. Electrochimica Acta, 52(27), 7660-7669. doi:10.1016/j.electacta.2006.12.060 es_ES
dc.description.references Ithurbide, A., Frateur, I., Galtayries, A., & Marcus, P. (2007). XPS and flow-cell EQCM study of albumin adsorption on passivated chromium surfaces: Influence of potential and pH. Electrochimica Acta, 53(3), 1336-1345. doi:10.1016/j.electacta.2007.04.109 es_ES
dc.description.references Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur W�gung d�nner Schichten und zur Mikrow�gung. Zeitschrift f�r Physik, 155(2), 206-222. doi:10.1007/bf01337937 es_ES
dc.description.references Keiji Kanazawa, K., & Gordon, J. G. (1985). The oscillation frequency of a quartz resonator in contact with liquid. Analytica Chimica Acta, 175, 99-105. doi:10.1016/s0003-2670(00)82721-x es_ES
dc.description.references Olsson, C.-O. A., & Landolt, D. (2004). Atmospheric oxidation of a Nb–Zr alloy studied with XPS. Corrosion Science, 46(1), 213-224. doi:10.1016/s0010-938x(03)00139-2 es_ES
dc.description.references Brox B. Olefjord I. , in Proceedings of Stainless Steel 1984, p. 134, The Institute of Metals, London (1985). es_ES
dc.description.references Wegrelius L. Olefjord I. , in Proceedings of 12th International Corrosion Congress, 5B, p. 3887, NACE, Houston, TX (1993). es_ES
dc.description.references Högström, J., Fredriksson, W., Edstrom, K., Björefors, F., Nyholm, L., & Olsson, C.-O. A. (2013). Cation profiling of passive films on stainless steel formed in sulphuric and acetic acid by deconvolution of angle-resolved X-ray photoelectron spectra. Applied Surface Science, 284, 700-714. doi:10.1016/j.apsusc.2013.07.158 es_ES
dc.description.references Valero Vidal, C., & Igual Muñoz, A. (2008). Electrochemical characterisation of biomedical alloys for surgical implants in simulated body fluids. Corrosion Science, 50(7), 1954-1961. doi:10.1016/j.corsci.2008.04.002 es_ES
dc.description.references Valero Vidal, C., & Igual Muñoz, A. (2010). Study of the adsorption process of bovine serum albumin on passivated surfaces of CoCrMo biomedical alloy. Electrochimica Acta, 55(28), 8445-8452. doi:10.1016/j.electacta.2010.07.028 es_ES
dc.description.references Valero Vidal, C., & Igual Muñoz, A. (2011). Effect of physico-chemical properties of simulated body fluids on the electrochemical behaviour of CoCrMo alloy. Electrochimica Acta, 56(24), 8239-8248. doi:10.1016/j.electacta.2011.06.068 es_ES
dc.description.references Valero-Vidal, C., Casabán-Julián, L., Herraiz-Cardona, I., & Igual-Muñoz, A. (2013). Influence of carbides and microstructure of CoCrMo alloys on their metallic dissolution resistance. Materials Science and Engineering: C, 33(8), 4667-4676. doi:10.1016/j.msec.2013.07.041 es_ES
dc.description.references Pourbaix M. , Atlas of Electrochemical Equilibria in Aquaous solutions, Pergamon Press, Oxford (1996). es_ES
dc.description.references Igual Muñoz A. Mischler S. , Inter-laboratory study on electrochemical methods for the characterisation of CoCrMo biomedical alloys in simulated body fluids, European Federation of Corrosion by Maney Publishing on behalf of The Institute of Materials, Minerals & Mining, UK (2011). es_ES
dc.description.references Valero-Vidal C. , Study of the degradation mechanisms of the CoCrMo alloy in physiological media by electrochemical techniques and surface analysis, Ph.D. Thesis, Valencia (2012). es_ES
dc.description.references Cabrera, N., & Mott, N. F. (1949). Theory of the oxidation of metals. Reports on Progress in Physics, 12(1), 163-184. doi:10.1088/0034-4885/12/1/308 es_ES
dc.description.references Olsson, C.-O. A., Hamm, D., & Landolt, D. (2000). Evaluation of Passive Film Growth Models with the Electrochemical Quartz Crystal Microbalance on PVD Deposited Cr. Journal of The Electrochemical Society, 147(11), 4093. doi:10.1149/1.1394025 es_ES
dc.description.references Alaeddine S. Nygren H. , Logarithmic growth of protein films, in Horbett T. A. Brash J. L. (eds.), Proteins at interfaces II, p. 41-45, Washington (1995). es_ES
dc.description.references Nygren, H. (1996). Attractive adsorbate interaction in biological surface reactions. Biophysical Chemistry, 61(2-3), 73-84. doi:10.1016/s0301-4622(96)00022-1 es_ES
dc.description.references Valero Vidal C. Igual Muñoz A. , in Bio-tribocorrosion in biomaterials and medical impants, 1st ed., Yan Y. , Editor, p. 187-220, Wood Publishing, Philadelphia (2013). es_ES
dc.description.references Sakiyama, T., Tomura, J., Imamura, K., & Nakanishi, K. (2004). Adsorption characteristics of bovine serum albumin and its peptide fragments on a stainless steel surface. Colloids and Surfaces B: Biointerfaces, 33(2), 77-84. doi:10.1016/j.colsurfb.2003.08.010 es_ES
dc.description.references Omanovic, S., & Roscoe, S. G. (1999). Electrochemical Studies of the Adsorption Behavior of Bovine Serum Albumin on Stainless Steel. Langmuir, 15(23), 8315-8321. doi:10.1021/la990474f es_ES
dc.description.references Yu, Y., & Jin, G. (2005). Influence of electrostatic interaction on fibrinogen adsorption on gold studied by imaging ellipsometry combined with electrochemical methods. Journal of Colloid and Interface Science, 283(2), 477-481. doi:10.1016/j.jcis.2004.09.021 es_ES
dc.description.references Metikos̆-Huković, M., Kwokal, A., & Piljac, J. (2003). The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution. Biomaterials, 24(21), 3765-3775. doi:10.1016/s0142-9612(03)00252-7 es_ES
dc.description.references Bojinov, M., Fabricius, G., Laitinen, T., Mäkelä, K., Saario, T., & Sundholm, G. (2000). Coupling between ionic defect structure and electronic conduction in passive films on iron, chromium and iron–chromium alloys. Electrochimica Acta, 45(13), 2029-2048. doi:10.1016/s0013-4686(99)00423-5 es_ES
dc.description.references McClellan, S. J., & Franses, E. I. (2003). Effect of concentration and denaturation on adsorption and surface tension of bovine serum albumin. Colloids and Surfaces B: Biointerfaces, 28(1), 63-75. doi:10.1016/s0927-7765(02)00131-5 es_ES
dc.description.references Tanuma, S., Powell, C. J., & Penn, D. R. (1994). Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50-2000 eV range. Surface and Interface Analysis, 21(3), 165-176. doi:10.1002/sia.740210302 es_ES
dc.description.references Tanuma, S., Powell, C. J., & Penn, D. R. (2003). Calculation of electron inelastic mean free paths (IMFPs) VII. Reliability of the TPP-2M IMFP predictive equation. Surface and Interface Analysis, 35(3), 268-275. doi:10.1002/sia.1526 es_ES
dc.description.references Scofield, J. H. (1976). Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. Journal of Electron Spectroscopy and Related Phenomena, 8(2), 129-137. doi:10.1016/0368-2048(76)80015-1 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem