Mostrar el registro sencillo del ítem
dc.contributor.author | Valdes, Teresa | es_ES |
dc.contributor.author | Rodríguez Jimenez, F. J. | es_ES |
dc.contributor.author | García Cruz, Dunia Mercedes | es_ES |
dc.contributor.author | Escobar Ivirico, Jorge Luis | es_ES |
dc.contributor.author | Alastrue, Ana | es_ES |
dc.contributor.author | Erceg, Slaven | es_ES |
dc.contributor.author | Monleón Pradas, Manuel | es_ES |
dc.contributor.author | Moreno-Manzano, Victoria | es_ES |
dc.date.accessioned | 2020-09-18T03:36:03Z | |
dc.date.available | 2020-09-18T03:36:03Z | |
dc.date.issued | 2015-06 | es_ES |
dc.identifier.issn | 1932-6254 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/150351 | |
dc.description.abstract | [EN] Spinal cord injury (SCI) is a cause of paralysis. Although some strategies have been proposed to palliate the severity of this condition, so far no effective therapies have been found to reverse it. Recently, we have shown that acute transplantation of ependymal stem/progenitor cells (epSPCs), which are spinal cord-derived neural precursors, rescue lost neurological function after SCI in rodents. However, in a chronic scenario with axon repulsive reactive scar, cell transplantation alone is not sufficient to bridge a spinal cord lesion, therefore a combinatorial approach is necessary to fill cavities in the damaged tissue with biomaterial that supports stem cells and ensures that better neural integration and survival occur. Caprolactone 2-(methacryloyloxy) ethyl ester (CLMA) is a monomer [obtained as a result of epsilon-caprolactone and 2-hydroxyethyl methacrylate (HEMA) ring opening/esterification reaction], which can be processed to obtain a porous non-toxic 3D scaffold that shows good biocompatibility with epSPC cultures. epSPCs adhere to the scaffolds and maintain the ability to expand the culture through the biomaterial. However, a significant reduction of cell viability of epSPCs after 6days in vitro was detected. FM19G11, which has been shown to enhance self-renewal properties, rescues cell viability at 6days. Moreover, addition of FM19G11 enhances the survival rates of mature neurons from the dorsal root ganglia when cultured with epSPCs on 3D CLMA scaffolds. Overall, CLMA porous scaffolds constitute a good niche to support neural cells for cell transplantation approaches that, in combination with FM19G11, offer a new framework for further trials in spinal cord regeneration. Copyright (c) 2013 John Wiley & Sons, Ltd. | es_ES |
dc.description.sponsorship | We are especially grateful to Richard Griffeth for his English-language editing. We also thank the Confocal Microscopy and the Electron Microscopy services of the Centro de Investigacion Principe Felipe (Valencia, Spain). This work was supported by the Instituto de Salud Carlos III (cofinanciacion FEDER; Grant No. FISS PI10/01683) and Ministerio de Ciencia e Innovacion (MICINN; Spanish Consolider Ion Channel Initiative No. CSD 2008-00005). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Journal of Tissue Engineering and Regenerative Medicine | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Biomaterials | es_ES |
dc.subject | Ependymal stem cells | es_ES |
dc.subject | Pharmacology | es_ES |
dc.subject | Spinal cord injury | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Methacrylate-endcapped caprolactone and FM19G11 provide a proper niche for spinal cord-derived neural cells | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/term.1735 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//10%2F01683/ES/REGENERACION DE LA FUNCION MOTORA TRAS LESION MEDULAR TRAUMATICA: ACTIVACION DEL POTENCIAL REGENERADOR ENDOGENO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2008-00005/ES/La Iniciativa Española en Canales Iónicos/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Valdes, T.; Rodríguez Jimenez, FJ.; García Cruz, DM.; Escobar Ivirico, JL.; Alastrue, A.; Erceg, S.; Monleón Pradas, M.... (2015). Methacrylate-endcapped caprolactone and FM19G11 provide a proper niche for spinal cord-derived neural cells. Journal of Tissue Engineering and Regenerative Medicine. 9(6):734-739. https://doi.org/10.1002/term.1735 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/term.1735 | es_ES |
dc.description.upvformatpinicio | 734 | es_ES |
dc.description.upvformatpfin | 739 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 6 | es_ES |
dc.identifier.pmid | 23533014 | es_ES |
dc.relation.pasarela | S\308325 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Goritz, C., Dias, D. O., Tomilin, N., Barbacid, M., Shupliakov, O., & Frisen, J. (2011). A Pericyte Origin of Spinal Cord Scar Tissue. Science, 333(6039), 238-242. doi:10.1126/science.1203165 | es_ES |
dc.description.references | Ivirico, J. L. E., Martínez, E. C., Sánchez, M. S., Criado, I. M., Ribelles, J. L. G., & Pradas, M. M. (2007). Structure and properties of methacrylate-endcapped caprolactone networks with modulated water uptake for biomedical applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 83B(1), 266-275. doi:10.1002/jbm.b.30792 | es_ES |
dc.description.references | Ivirico, J. L. E., Salmerón-Sánchez, M., Ribelles, J. L. G., Pradas, M. M., Soria, J. M., Gomes, M. E., … Mano, J. F. (2009). Proliferation and differentiation of goat bone marrow stromal cells in 3D scaffolds with tunable hydrophilicity. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 91B(1), 277-286. doi:10.1002/jbm.b.31400 | es_ES |
dc.description.references | Johansson, C. B., Momma, S., Clarke, D. L., Risling, M., Lendahl, U., & Frisén, J. (1999). Identification of a Neural Stem Cell in the Adult Mammalian Central Nervous System. Cell, 96(1), 25-34. doi:10.1016/s0092-8674(00)80956-3 | es_ES |
dc.description.references | Madigan, N. N., McMahon, S., O’Brien, T., Yaszemski, M. J., & Windebank, A. J. (2009). Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds. Respiratory Physiology & Neurobiology, 169(2), 183-199. doi:10.1016/j.resp.2009.08.015 | es_ES |
dc.description.references | Moreno-Manzano, V., Rodríguez-Jiménez, F. J., Aceña-Bonilla, J. L., Fustero-Lardíes, S., Erceg, S., Dopazo, J., … Sánchez-Puelles, J. M. (2009). FM19G11, a New Hypoxia-inducible Factor (HIF) Modulator, Affects Stem Cell Differentiation Status. Journal of Biological Chemistry, 285(2), 1333-1342. doi:10.1074/jbc.m109.008326 | es_ES |
dc.description.references | Moreno-Manzano, V., Rodríguez-Jiménez, F. J., García-Roselló, M., Laínez, S., Erceg, S., Calvo, M. T., … Stojkovic, M. (2009). Activated Spinal Cord Ependymal Stem Cells Rescue Neurological Function. Stem Cells, 27(3), 733-743. doi:10.1002/stem.24 | es_ES |
dc.description.references | Oliveira, A. L., Sousa, E. C., Silva, N. A., Sousa, N., Salgado, A. J., & Reis, R. L. (2012). Peripheral mineralization of a 3D biodegradable tubular construct as a way to enhance guidance stabilization in spinal cord injury regeneration. Journal of Materials Science: Materials in Medicine, 23(11), 2821-2830. doi:10.1007/s10856-012-4741-0 | es_ES |
dc.description.references | Reid, A. J., Sun, M., Wiberg, M., Downes, S., Terenghi, G., & Kingham, P. J. (2011). Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis. Neuroscience, 199, 515-522. doi:10.1016/j.neuroscience.2011.09.064 | es_ES |
dc.description.references | Rodríguez-Jiménez, F. J., Alastrue-Agudo, A., Erceg, S., Stojkovic, M., & Moreno-Manzano, V. (2012). FM19G11 Favors Spinal Cord Injury Regeneration and Stem Cell Self-Renewal by Mitochondrial Uncoupling and Glucose Metabolism Induction. STEM CELLS, 30(10), 2221-2233. doi:10.1002/stem.1189 | es_ES |
dc.description.references | Rodríguez-Jiménez, F. J., Valdes-Sánchez, T., Carrillo, J. M., Rubio, M., Monleon-Prades, M., García-Cruz, D. M., … Moreno-Manzano, V. (2012). Platelet-Rich Plasma Favors Proliferation of Canine Adipose-Derived Mesenchymal Stem Cells in Methacrylate-Endcapped Caprolactone Porous Scaffold Niches. Journal of Functional Biomaterials, 3(3), 556-568. doi:10.3390/jfb3030556 | es_ES |
dc.description.references | Scuteri, A., Ravasi, M., Pasini, S., Bossi, M., & Tredici, G. (2011). Mesenchymal stem cells support dorsal root ganglion neurons survival by inhibiting the metalloproteinase pathway. Neuroscience, 172, 12-19. doi:10.1016/j.neuroscience.2010.10.065 | es_ES |
dc.description.references | Straley, K. S., Foo, C. W. P., & Heilshorn, S. C. (2010). Biomaterial Design Strategies for the Treatment of Spinal Cord Injuries. Journal of Neurotrauma, 27(1), 1-19. doi:10.1089/neu.2009.0948 | es_ES |
dc.description.references | Thouas GA Contreras KG Bernard CC et al 2008 Biomaterials for spinal cord regeneration: outgrowth of presumptive neuronal precursors on electrospun poly( ε -caprolactone) scaffolds microlayered with alternating polyelectrolytes Conf Proc IEEE Eng Med Biol Soc 1825 1828 | es_ES |
dc.description.references | Valdés-Sánchez, T., Kirstein, M., Pérez-Villalba, A., Vega, J. A., & Fariñas, I. (2010). BDNF is essentially required for the early postnatal survival of nociceptors. Developmental Biology, 339(2), 465-476. doi:10.1016/j.ydbio.2010.01.001 | es_ES |
dc.description.references | Wilcox, J. T., Cadotte, D., & Fehlings, M. G. (2012). Spinal cord clinical trials and the role for bioengineering. Neuroscience Letters, 519(2), 93-102. doi:10.1016/j.neulet.2012.02.028 | es_ES |
dc.description.references | Yang, J., Lou, Q., Huang, R., Shen, L., & Chen, Z. (2008). Dorsal root ganglion neurons induce transdifferentiation of mesenchymal stem cells along a Schwann cell lineage. Neuroscience Letters, 445(3), 246-251. doi:10.1016/j.neulet.2008.09.015 | es_ES |