- -

Methacrylate-endcapped caprolactone and FM19G11 provide a proper niche for spinal cord-derived neural cells

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Methacrylate-endcapped caprolactone and FM19G11 provide a proper niche for spinal cord-derived neural cells

Show simple item record

Files in this item

dc.contributor.author Valdes, Teresa es_ES
dc.contributor.author Rodríguez Jimenez, F. J. es_ES
dc.contributor.author García Cruz, Dunia Mercedes es_ES
dc.contributor.author Escobar Ivirico, Jorge Luis es_ES
dc.contributor.author Alastrue, Ana es_ES
dc.contributor.author Erceg, Slaven es_ES
dc.contributor.author Monleón Pradas, Manuel es_ES
dc.contributor.author Moreno-Manzano, Victoria es_ES
dc.date.accessioned 2020-09-18T03:36:03Z
dc.date.available 2020-09-18T03:36:03Z
dc.date.issued 2015-06 es_ES
dc.identifier.issn 1932-6254 es_ES
dc.identifier.uri http://hdl.handle.net/10251/150351
dc.description.abstract [EN] Spinal cord injury (SCI) is a cause of paralysis. Although some strategies have been proposed to palliate the severity of this condition, so far no effective therapies have been found to reverse it. Recently, we have shown that acute transplantation of ependymal stem/progenitor cells (epSPCs), which are spinal cord-derived neural precursors, rescue lost neurological function after SCI in rodents. However, in a chronic scenario with axon repulsive reactive scar, cell transplantation alone is not sufficient to bridge a spinal cord lesion, therefore a combinatorial approach is necessary to fill cavities in the damaged tissue with biomaterial that supports stem cells and ensures that better neural integration and survival occur. Caprolactone 2-(methacryloyloxy) ethyl ester (CLMA) is a monomer [obtained as a result of epsilon-caprolactone and 2-hydroxyethyl methacrylate (HEMA) ring opening/esterification reaction], which can be processed to obtain a porous non-toxic 3D scaffold that shows good biocompatibility with epSPC cultures. epSPCs adhere to the scaffolds and maintain the ability to expand the culture through the biomaterial. However, a significant reduction of cell viability of epSPCs after 6days in vitro was detected. FM19G11, which has been shown to enhance self-renewal properties, rescues cell viability at 6days. Moreover, addition of FM19G11 enhances the survival rates of mature neurons from the dorsal root ganglia when cultured with epSPCs on 3D CLMA scaffolds. Overall, CLMA porous scaffolds constitute a good niche to support neural cells for cell transplantation approaches that, in combination with FM19G11, offer a new framework for further trials in spinal cord regeneration. Copyright (c) 2013 John Wiley & Sons, Ltd. es_ES
dc.description.sponsorship We are especially grateful to Richard Griffeth for his English-language editing. We also thank the Confocal Microscopy and the Electron Microscopy services of the Centro de Investigacion Principe Felipe (Valencia, Spain). This work was supported by the Instituto de Salud Carlos III (cofinanciacion FEDER; Grant No. FISS PI10/01683) and Ministerio de Ciencia e Innovacion (MICINN; Spanish Consolider Ion Channel Initiative No. CSD 2008-00005). es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Journal of Tissue Engineering and Regenerative Medicine es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Biomaterials es_ES
dc.subject Ependymal stem cells es_ES
dc.subject Pharmacology es_ES
dc.subject Spinal cord injury es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Methacrylate-endcapped caprolactone and FM19G11 provide a proper niche for spinal cord-derived neural cells es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/term.1735 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//10%2F01683/ES/REGENERACION DE LA FUNCION MOTORA TRAS LESION MEDULAR TRAUMATICA: ACTIVACION DEL POTENCIAL REGENERADOR ENDOGENO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2008-00005/ES/La Iniciativa Española en Canales Iónicos/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Valdes, T.; Rodríguez Jimenez, FJ.; García Cruz, DM.; Escobar Ivirico, JL.; Alastrue, A.; Erceg, S.; Monleón Pradas, M.... (2015). Methacrylate-endcapped caprolactone and FM19G11 provide a proper niche for spinal cord-derived neural cells. Journal of Tissue Engineering and Regenerative Medicine. 9(6):734-739. https://doi.org/10.1002/term.1735 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/term.1735 es_ES
dc.description.upvformatpinicio 734 es_ES
dc.description.upvformatpfin 739 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 6 es_ES
dc.identifier.pmid 23533014 es_ES
dc.relation.pasarela S\308325 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Goritz, C., Dias, D. O., Tomilin, N., Barbacid, M., Shupliakov, O., & Frisen, J. (2011). A Pericyte Origin of Spinal Cord Scar Tissue. Science, 333(6039), 238-242. doi:10.1126/science.1203165 es_ES
dc.description.references Ivirico, J. L. E., Martínez, E. C., Sánchez, M. S., Criado, I. M., Ribelles, J. L. G., & Pradas, M. M. (2007). Structure and properties of methacrylate-endcapped caprolactone networks with modulated water uptake for biomedical applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 83B(1), 266-275. doi:10.1002/jbm.b.30792 es_ES
dc.description.references Ivirico, J. L. E., Salmerón-Sánchez, M., Ribelles, J. L. G., Pradas, M. M., Soria, J. M., Gomes, M. E., … Mano, J. F. (2009). Proliferation and differentiation of goat bone marrow stromal cells in 3D scaffolds with tunable hydrophilicity. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 91B(1), 277-286. doi:10.1002/jbm.b.31400 es_ES
dc.description.references Johansson, C. B., Momma, S., Clarke, D. L., Risling, M., Lendahl, U., & Frisén, J. (1999). Identification of a Neural Stem Cell in the Adult Mammalian Central Nervous System. Cell, 96(1), 25-34. doi:10.1016/s0092-8674(00)80956-3 es_ES
dc.description.references Madigan, N. N., McMahon, S., O’Brien, T., Yaszemski, M. J., & Windebank, A. J. (2009). Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds. Respiratory Physiology & Neurobiology, 169(2), 183-199. doi:10.1016/j.resp.2009.08.015 es_ES
dc.description.references Moreno-Manzano, V., Rodríguez-Jiménez, F. J., Aceña-Bonilla, J. L., Fustero-Lardíes, S., Erceg, S., Dopazo, J., … Sánchez-Puelles, J. M. (2009). FM19G11, a New Hypoxia-inducible Factor (HIF) Modulator, Affects Stem Cell Differentiation Status. Journal of Biological Chemistry, 285(2), 1333-1342. doi:10.1074/jbc.m109.008326 es_ES
dc.description.references Moreno-Manzano, V., Rodríguez-Jiménez, F. J., García-Roselló, M., Laínez, S., Erceg, S., Calvo, M. T., … Stojkovic, M. (2009). Activated Spinal Cord Ependymal Stem Cells Rescue Neurological Function. Stem Cells, 27(3), 733-743. doi:10.1002/stem.24 es_ES
dc.description.references Oliveira, A. L., Sousa, E. C., Silva, N. A., Sousa, N., Salgado, A. J., & Reis, R. L. (2012). Peripheral mineralization of a 3D biodegradable tubular construct as a way to enhance guidance stabilization in spinal cord injury regeneration. Journal of Materials Science: Materials in Medicine, 23(11), 2821-2830. doi:10.1007/s10856-012-4741-0 es_ES
dc.description.references Reid, A. J., Sun, M., Wiberg, M., Downes, S., Terenghi, G., & Kingham, P. J. (2011). Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis. Neuroscience, 199, 515-522. doi:10.1016/j.neuroscience.2011.09.064 es_ES
dc.description.references Rodríguez-Jiménez, F. J., Alastrue-Agudo, A., Erceg, S., Stojkovic, M., & Moreno-Manzano, V. (2012). FM19G11 Favors Spinal Cord Injury Regeneration and Stem Cell Self-Renewal by Mitochondrial Uncoupling and Glucose Metabolism Induction. STEM CELLS, 30(10), 2221-2233. doi:10.1002/stem.1189 es_ES
dc.description.references Rodríguez-Jiménez, F. J., Valdes-Sánchez, T., Carrillo, J. M., Rubio, M., Monleon-Prades, M., García-Cruz, D. M., … Moreno-Manzano, V. (2012). Platelet-Rich Plasma Favors Proliferation of Canine Adipose-Derived Mesenchymal Stem Cells in Methacrylate-Endcapped Caprolactone Porous Scaffold Niches. Journal of Functional Biomaterials, 3(3), 556-568. doi:10.3390/jfb3030556 es_ES
dc.description.references Scuteri, A., Ravasi, M., Pasini, S., Bossi, M., & Tredici, G. (2011). Mesenchymal stem cells support dorsal root ganglion neurons survival by inhibiting the metalloproteinase pathway. Neuroscience, 172, 12-19. doi:10.1016/j.neuroscience.2010.10.065 es_ES
dc.description.references Straley, K. S., Foo, C. W. P., & Heilshorn, S. C. (2010). Biomaterial Design Strategies for the Treatment of Spinal Cord Injuries. Journal of Neurotrauma, 27(1), 1-19. doi:10.1089/neu.2009.0948 es_ES
dc.description.references Thouas GA Contreras KG Bernard CC et al 2008 Biomaterials for spinal cord regeneration: outgrowth of presumptive neuronal precursors on electrospun poly( ε -caprolactone) scaffolds microlayered with alternating polyelectrolytes Conf Proc IEEE Eng Med Biol Soc 1825 1828 es_ES
dc.description.references Valdés-Sánchez, T., Kirstein, M., Pérez-Villalba, A., Vega, J. A., & Fariñas, I. (2010). BDNF is essentially required for the early postnatal survival of nociceptors. Developmental Biology, 339(2), 465-476. doi:10.1016/j.ydbio.2010.01.001 es_ES
dc.description.references Wilcox, J. T., Cadotte, D., & Fehlings, M. G. (2012). Spinal cord clinical trials and the role for bioengineering. Neuroscience Letters, 519(2), 93-102. doi:10.1016/j.neulet.2012.02.028 es_ES
dc.description.references Yang, J., Lou, Q., Huang, R., Shen, L., & Chen, Z. (2008). Dorsal root ganglion neurons induce transdifferentiation of mesenchymal stem cells along a Schwann cell lineage. Neuroscience Letters, 445(3), 246-251. doi:10.1016/j.neulet.2008.09.015 es_ES


This item appears in the following Collection(s)

Show simple item record